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SUMMARY 

Part 1 

Theoretical  methods are developed  for  calculating  the  interaction of a wing 
both with a circular  slipstream and  with a wide  slipstream  from a row of propellers. 
Rectangular  and  elliptic jets are used as models  for  wide  slipstreams.  Standard 
imaging  techniques a r e  used  to  develop a lifting  surface  theory  for a static  wing  in a 
rectangular jet. The  effect of forward  speed is approximated by multiplying  the 
interference  potential by a scalar  strength  factor,  derived  with  the  aid of studies of 
the interactic:.. of a lifting  line  with  an  elliptic jet. A closed  form  solution is found 
for  an  elliptic wing  exactly  spanning  the  foci of an  elliptic jet. A continuous  wide  jet 
is found to  provide a substantially  greater  augmentation of lift  than  multiple  separate 
jets,  because of the  elimination of edge  effects  at  the  gaps.  Also it is easier to 
deflect a wide  shallow  jet  than a deep jet. 

Part 2 

With aid of the  concept of the  apparent  mass  influenced by the  wing,  simple 
formulas are developed  for  the lift and  drag of wings  in  both  wide  and  circular jets. 
These  formulas  closely  approximate  the  results of detailed  calculations  developed 
in Part 1, and  provide  the  basis of a method  suitable  for  engineering  calculations. 
Predictions  using  this  method  show good correlation  with  existing  experimental 
data  for  wings  without  flaps.  The  method  can also be  used  to  estimate  the  charac- 
terist ics of propeller-wing-flap  combinations if  suitable  values are  assumed  for  the 
flap  effectiveness a / 6 in a jet. It appears  from  the  available  evidence that the  flap 
effectiveness is substantially  increased  in a jet. 
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T H E O R E T I C A L   S T U D I E S  OF T H E   L I F T  OF A  WING 

I N   W I D E   A N D   C I R C U L A R   S L I P S T R E A M S  
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1. Introduction 

The  need  for V/STOL aircraft  to  relieve air traffic  congestion is becoming 
increasingly  apparent. One of the  most  promising  methods of reducing  take off and 
landing  distances is to  use  propellers or ducted  fans  to  augment  the  airflow  over  the 
wing at low speeds.  Interest has therefore  been  renewed  in  predicting  the  effect of 
slipstream-wing flow interaction  on  the  aerodynamic  characteristics of deflected 
slipstream  and tilt wing aircraft .  

The lift of a wing  spanning a circular  slipstream  has  been  quite  extensively 
studied.  Early  investigators  used  lifting  line  theory (refs. 1-5). Later  slender body 
theory  was  introduced  to  treat  the  case when the  aspect  ratio of the  immersed  part  of 
the wing is small   (refs.  6-9). Neither of these  theories  agreed  well  with  experi- 
mental  results.  Lifting  surface  theories  were  developed by Rethorst  (ref. l o ) ,  using 
an  analytical  approach,  and  Ribner  and  Ellis  (refs. 16-17), using a numerical 
approach.  These  have  been  shown  to  give  quite good agreement  with a limited  amount 
of experimental  data, but require lengthy  computations.  Rethorst's  method has been 
extended  to  cover  the  effects of several  circular  slipstreams,  inclined  slipstreams, 
high  angle of attack  and  separated flow (refs.  11-15), but  the results of numerical 
calculations  have not been  included. Only Sowydra (ref. 18) has  attempted  to  allow 
for  the  deflection of the  slipstream  boundary. 

The  possibility of the  slipstreams  from  several  propellers  merging  to  form a 
single  wide jet has not  been  considered  in  any of these  investigations. It can  be 
expected,  however,  that  the  elimination of the  gaps would lead  to  an  increase  in 
efficiency by allowing  the  circulation  to be maintained  continuously across  the  span. 
In Part 1 of this  report a theory is formulated  for both  wide  and circular  slipstreams. 
In Part 2 it is shown how the  theory  may be  used  to  predict  the  characteristics of 
practical V/STOL configurations,  and its correlation  with  existing  experimental  data 
is established. 

To  restrict  the  complexity of the  calculations it is desirable  to  use  the 
simplest  possible  analytical  models. Two models of a wide  slipstream  have  been 
found to be amenable  to  analysis, a rectangular  jet  and  an  elliptic  jet. 

The  rectangular  jet is particularly  suitable  for  an  analysis of the  static  case,  
when  the aircraf t  is in a hovering  condition.  The  situation of the blown part  of the 
wing is then  similar  to  that of a wing  in  an  open wind tunnel,  and it is possible  to  draw 
upon existing  theories of wind tunnel  interference.  The  distinguishing  features of the 
present  case are that  the  wing  may  span  the  entire  jet,  and that the  aspect  ratio of the 
par t  of it in  the  jet  may  be  small, s o  that i t  is desirable  to  allow  for both the  span- 
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wise  and  the  chordwise  variation of the  interference downwash.  With a rectangular 
jet it is possible  to  satisfy  the  boundary condition for  the  static  case at every point of 
the jet surface  throughout its length by introducing  images, so that a lifting  surface 
theory  can  quite  readily  be  developed. 

Unfortunately  this  theory is exact only  for  the static case,   since it is no longer 
possible  to  satisfy  the  boundary  conditions at the  surface of a rectangular jet by intro- 
ducing  images when  the aircraft  has  forward  speed.  Using  an  elliptic  jet  as a model 
of the  slipstream , it  is,  however , possible to develop a simple  lifting  line  theory 
which is valid  throughout  the  speed  range.  From  the  results of this  analysis it is then 
possible  to  determine a correction  factor  for  the  effect of forward  speed on  the rec- 
tangular jet. In this way an  approximate  lifting  surface  theory is obtained for  the 
whole  speed  range. By using  the  results of calculations  for  a  square jet to  estimate 
the  chordwise  variation of the  interference  downwash, it is also  possible  to  develop  a 
simplified  lifting  surface  theory  for  a  circular  jet. 
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Notation for Part 1 

P 

VO 

PO 

CY 

T 

L 

D 

CL 

C D  

e 
b 

C 

S 

AR 

A 

B 

H 

AR 

x 

Air  density 

Free stream  velocity 

Jet velocity 

Velocity ratio - 
Pressu re  in  the  free  stream 

Pres su re  in  the jet 

Angle of attack 

Thrust 

Lift 

Drag  due  to  lift 

V O  

v j  

dL 
d a  

Lift  slope - 

Lift  coefficient  referred  to jet velocity Vj  

Coefficent of induced drag  referred  to  jet  velocity V j 

dCL Lift  slope 

Jet  deflection  angle 

Wing span 

Wing chord 

Wing area 

Wing aspect  ratio 

Wing sweep at 1/4 chord 

Jet width 

Jet height 

Jet a rea  

Aspect  ratio of rectangular jet 

Ratio of  width to  height of elliptic jet 
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W 

" _  

U 

a + 

a - 

f 

fx 

Anm 

Rnm 

Gm 
P 

Subscripts 
n,  m 

Potential in the free stream 

Potential  in  the jet 

Potential of a given  vortex  distribution  in a free  s t ream 

Circulation 

Downwash velocity 

Downwash velocity  due  to  jet  interference 

Downwash velocity at the  loadline  due  to jet interference 

Space  coordinates 

Coordinates of horseshoe  vortex 

Coordinates of image  vortex 

Nondimensional  coordinates X Y O  
b/2 ' b/2 ' b/2 

(in  Section 5 t , tl are elliptic  coordinates) 

b/ 2 ' b / 2  ' b / 2  

b/ 2 ' b/2 ' b/2 

Lateral  and  vertical  displacement of image  vortex 

Ratio of wing  span to jet  width b / B  

Coordinate of jet downwash  function - ( yc + 7 ) 

Coordinate of jet downwash  function - ( a c  - 7 ) 

"L- - 
X 

- 
Z 

U 

2 
U 

2 

Jet downwash  function  (equation ( 3 . 8 ) )  

Longitudinal  derivative of jet downwash  function  (equation (3.11)) 

Downwash influence  coefficient  in a free  stream 

Interference  downwash  influence  coefficient 

Nondimensional  circulation I'/bVj 

Strength  factor of interference  influence  coefficients 

Span stations of load  points  and  control  points  for  calculation 
of the lift distribution. 
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2. Mathematical  formulation 

The  general  case  to be considered is the flow over a wing in  the  sl ipstreams 
generated by one or  more  propellers,   with  an  external flow  due to  forward  motion of 
the wing. The  slipstreams  from a row of closely  spaced  propellers are assumed  to 
merge  to  form a single  wide jet (sketch 1). 

/ 
/"""- v .  \ 

\ ' 0  """_ 
I I \  

I 1  .l 
v .  - 

c -  
/ 

c 
\ / '" - "" """ 

Sketch 1. Wing in  a Slipstream  and  an  External Flow 

To facilitate  the  analysis  the  following  simplifying  assumptions are also  made: 

(1) The  fluid is inviscid  and  incompressible 
(2) Before it is influenced by the  wing  the  slipstream is a uniform 

jet  such as might  be  produced by an  actuator  with a uniform 
pressure  change:  transverse  velocities  and  variations of the 
axial  velocity  induced by the  propellers  are  ignored. 

deflection of the  jet by the  wing is ignored. 
(3) The  jet  boundary  extends  back  in a parallel  direction: 

In the  case of large  flap  angles  the  third  assumption is not realistic.  The  deflected 
jet behind a moving  flapped  wing would impinge  on  the  external  stream  like a jet  flap, 
possibly  producing  an  increase  in  the  lift. 

Under the first two assumptions  the  perturbation  velocity  due  to  the  wing  can 
be represented both  inside  and  outside  the  slipstream as the  gradient of a velocity 
potential  which  satisfies  Laplace's  equation,  and  according  to  the  third  assumption 
the  location of the  boundary  between  the  two  regions is known. Let Vj  and Vo be  the 
unperturbed  velocity of the flow inside  and  outside  the  slipstream. Also let  pj  and 
v j  be  the  pressure  and  potential  inside  the  slipstream,  and po  and 9, the  pressure 
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and  potential  in  the  external flow.  At the  boundary both the  pressure and  potential 
must be  continuous,  that is 

a 
where - a n  denotes  differentiation  in  the  normal  direction. Now if the  perturbation 

velocities are small  compared  with  Vj  and Vo, then,  neglecting  the  squares of the 
perturbation  velocities  in  Bernoulli's  equation,  the  pressure  changes  inside  and 

outside  the  slipstream  are  proportional  to Vj a and Vo - " Since these 
a v j  

X a x  * 

must be  equal  along  the  whole  length of the  boundary,  the  boundary  conditions  can be 
expressed as 

where 

VO 

v j  

p u -  

The  wing  itself  will  generally  be  treated as a lifting  surface.  This  leads  to  the 
third  boundary  condition  that  on  the  wing  surface  the  downwash is such that the 
perturbed flow is tangential  to  the wing. To  simplify  the  calculations  the  Weissinger 
approximation  will  be  used (ref. 20). According  to  this  the  vorticity of the wing is 
assumed  to  be  concentrated at the 1/4 chord  line,  and  the  tangency  condition is 
required to be satisfied only at the 3/4 chord  line.  The  justification of thi-s approxi- 
mation is that it yields  the  same  value, 2 ?r , for  the  lift  slope of a two dimensional 
airfoil as is obtained by more  exact  theories. 
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3. Interference  for a Horseshoe  Vortex  in a Jet with No External  Flow 

The  wing  will  be  represented by a distribution of horseshoe  vortices  (sketch 
2) ,  and it is thus  necessary  to  determine  the  interference  for a horseshoe  vortex  in 
the  slipstream.  Initially only the  static case will  be  treated.  There is then no ex- 
ternal flow and the  situation is like  that  in  an  open  jet wind tunnel. Only the  f irst  
slipstream  boundary  condition (2.1) is relevant,  and  setting  the  velocity  ratio P 
equal  to  zero it becomes 

v j  = 0 

In order  to  simplify  the  mathematical  treatment of the  equations  it is convenient  to 
use a rectangular jet as a model  for a wide slipstream  from  several  propellers. 
This  permits  the  method of images  to be used. Two cases  will  therefore  be  consid- 
ered,  a rectangular  jet when  the sl ipstream is generated by several   propellers,  and 
a circular jet when it is generated by a single  propeller  or  fan. 

A. Rectangular jet 

For each  horseshoe  vortex  in  the  distribution  the  boundary  condition (3.1) can 
be  satisfied (ref. 19) by placing a doubly  infinite a r r a y  of image  horseshoe  vortices 
in  all  the  external  rectangles  formed by continuing  the jet boundaries  to  make a 
lattice  (sketch 3) .  All the  vortices  in one  column  have  the  same  sign,  and  the  sign 
alternates  in  successive  columns. If either  the bound or the  trailing  parts of the 
vortices  are  considered, it can  be  seen  that  the  elements are antisymmetrically 
disposed  about  any  side of the  rectangle  containing  the  jet, so that  their  contributions 
cancel  each  other.  The  boundary  condition is thus  satisfied  over  the  whole jet 
surface  in  three  dimensions.  The  same  proposition is true  for a complete  wing if  
image  wings  lifting  upwards  and  downwards a r e  placed  in  the  external  rectangles, 
and  it is evident that this  method  permits a lifting  surface  theory  to be developed. 

It is convenient  to separate  the downwash  due to  each  vortex  from  the  inter- 
ference downwash  due to its images.  Let  the  original  horseshoe  vortex  be  symmet- 
rically  placed  about  the z axis  in  the jet and  suppose that the  coordinates of its mid- 
span point a r e  (Xc, o , Zc). If its semi-span is yc the  trailing  parts of the  vortex are 
located at y = *yc, Then  the  midspan  points of the  images are at 

- 
x = x,,? - 

z = n  H + ( - q n  zc 

where B and H are  the  breadth  and  height of the jet. By the  Biot  Savart  law  the down- 
wash  due  to  one  image of semispan yc is 

a 



Sketch 2. Representation of the Wing as a Distribution of Horseshoe  Vortices 

- B -  

Sketch 3. Images  for a Single  Horseshoe  Vortex  in a Rectangular Jet 
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W i X-X r " 

r Y+Yc-Y 
one = - (x-5)2 + (Z-E)2 

image 

" 

Y-Yc-Y 1 
d(X-Z)2 + (y-yc-y)2 +(z-Zp 1 

" 

Y -Y c-Y 

(Y-Yc-YI2 + <,-a2 " 

r - 
x-x 11 

The  sense of the  images  can be taken  account of by introducing  the  factor (-l)n. 

Summations of a double ser ies  of te rms  of the  type  given by ( 3 . 3 )  would be 
laborious.  The  form of ( 3 . 3 ) ,  however,  and  the  results of calculations  for  open wind 
tunnels,  indicate  that  the  interference downwash can be satisfactorily  approximated 
in   terms of the  interference downwash  w in  the  plane of the load  line  and  the  longi- 
tudinal  slope of the  interference downwash in  this  plane as 

jo 

w - = w  J jo ym + X  

L -1 

(3-  4) 

In this  approximation  the  form of the  longitudinal  variation of the  downwash is 
assumed  to  be  independent of the  position  in  the  crossplane. 

1 0  



Introduce non dimensional  coordinates 5 , 9 , 5 by dividing by the  wing 

b 
B semi  span - . Also let the  ratio of the  wing  span  to  the jet width  be 

b 
B 

u=- 

and  define  the jet aspect  ratio as 

B 
J H 

AR. = - 

(3- 5) 

Then  the  equation  for  the  interference  downwash  in  the  plane of the  loadline  due  to a 
horseshoe  vortex of strength r becomes 

where 
m m 

t 

f(-a) = -f(a) 
and 

The  primes on the  summations  indicate that the  term is not  summed  when  m  and  n 
are both zero.  The  slope of the downwash  with respect  to  the  longitudinal  coordinate 
is 

(3.10) 
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where 

1 m + a  

m + a  \ 

fx (-a) = -fx (a) (3.11) 

The  summation of these  series is treated  in Appendix A. 

B. Circular  Jet 

When there  is only  one propeller  and  the  jet is circular ,  it is convenient  to 
regard  the  horseshoe  vortex of strength r as composed of a two dimensional  part 

consisting of two trailing  line  vortices of strength - and a part  antisymmetric  in 

the  longitudinal  direction  consisting of horseshoe  vortices of strength - extending 

r 
2 '  

r 
2 

backwards  and  forwards  (sketch 4). The two parts  cancel  each  other  ahead of the load 
&e  and reinforce  each  other behind it. 

The  downwash  in  the  plane of the  load  line is contributed  entirely by the two 
dimensional  part.  For  this  the  boundary  condition  can  be  satisfied (ref. 1) by intro- 
ducing  images at the  inverse  points  (sketch 5) 

y = f T  e ?  
Yc 

1 2  

(3.12) 



is equivalent to 

Sketch 4. Decomposition of a Horseshoe  Vortex  into two Dimensional  and 
Anti-symmetric Parts 

YC 

Sketch 5. Images  for a Vortex Pair in a Circular Jet 
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where B is the jet diameter.  Then  in  terms of the  nondimensional  coordinates 

Using  the  notation of (3.4) this  becomes 

where 

1 - 1 
; a  = - -  U T  ;a+="+ U T  f(a) = 

1 
2~ a - 

Utl C Utl c 

f(-a) = -f(a) 

(3.13) 

(3.14) 

(3.15) 

The  longitudinal  variation of the  downwash is due  to  the  antisymmetric  part. 
The  interference  potential  due  to  this  cannot  be  represented by images. It has  been 
evaluated  in  terms of Bessel  functions by Rethorst (ref. 10). The  results of wind 
tunnel  theory,  however,  indicate that the  ratio of the  slope of the  downwash  to  the 
downwash at the  load  line is nearly  the  same  for  circular and square jets. Thus  to 
estimate  the  slope of the downwash at the  load  line  for a circular  jet,  this  ratio 
can be  calculated  for a square  jet by the  methods  described  earlier  in  this  section, 
and  used  to  multiply  the  downwash at the  load  line  for  the  circular jet. Then  formula 
(3 .4)  may  be  used. In this way the  need  to  evaluate  the  antisymmetric  potential is 
obviated. 
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4. Determination of the  circulation  for a static wing by Weissinger  lifting  surface 
theory 

~ 

With the aid of the  results  for  the  interference  experienced by a horseshoe 
vortex  in a jet with  no external flow,  the  properties of a static wing can  be  calculated 
by the  methods of standard  wing  theory. Only the  case of a wing  which is symmetric 
in  the jet will  be  treated. 

The  vorticity of the  wing is assumed  to  be  concentrated at the 1/4 chord  line 
and  the  spanwise  distribution of the lift is represented by the  circulation at  a finite 
number of span  stations.  The  induced  downwash  angle  due  to  the  combined  effects of 
the  wing  vorticity  and  the  interference  vortices is then  required  to be  equal to  the  wing 
surface  angle at a corresponding  number of spanwise  control  points  along  the 3/4 
chord  line.  This  leads  to a set of algebraic  equations  for  the  circulation.  Because of 
the  symmetry it is only necessary  to  calculate  the  circulation at the  span  stations 
across  one  semi-span.  Let v m  denote  the mth span  station at which  the  circulation 
is to  be  calculated  and  let 

where r is the  circulation.  Let An, be  the  contribution  to  the  downwash  angle a t   the  
nth control point  due to  unit  circulation, Gm =1, at  the  mth  station on each  semispan. 
Also let R, be  the  contribution  due  to  the  corresponding  images  representing  the  jet 
interference.  Then if a n  is the  wing  surface  angle at the  nth  control  point 

where  the  summation is over  the  circulation  stations.  Since LY is known from  the 
distribution of twist  and  camber , the  determination of the  circulation  and  corresponding 
lift  and drag is reduced  to  the  solution of these  equations,  and  the  determination of 
the  influence  coefficients Anm and  Rnm. 

The  influence  coefficients A, for  the  free wing can  be  calculated  accurately 
by the  method of de Young and  Harper (ref. 20), who used  Fourier series to  represent 
the  continuous  distribution of circulation  in  terms of the  circulation at a finite  number 
of span  stations.  Since  the  contribution of the  image  vortex  distributions is a secon- 
dary  effect, a direct  summation of horseshoe  vortices is sufficient for the  calculation 
of the  interference  influence  coefficients  Rnm.  To  conform  the  interference  coefficients 
to the free wing  coefficients  the  horseshoe  vortices are distributed  with  varying  spans 
(sketch 6). One vortex is placed  on  the  wing  center  line, so that when  the  circulation 
is to be  calculated at N span  stations  from  the  tip  to  the  center  across  one  semispan, 

15 



the  total  number of vortices  across  the  full  span is 2N-1. The lateral limits of the 
horseshoes are then  defined by the  points 

- (2m-1) 7~ 
tlm = cos 4N 

The  vortices are given  the  strength 

- mw 
2N 

7, = cos - 

(4.3) 

of the  circulation at the  span  stations 

and are located  on  the 1/4 chord  line at these  stations so  that  their  longitudinal 
coordinates are 

(4-  4) 

where A is the  sweepback  angle of the 1/4 chord  line.  The  lateral  and  longitudinal 
coordinates of the  control  points  on  the 3/4 chord  line a r e  

17 = cos - n w  
n 2N 

where  c( n) is the  local  chord.  Each  influence  coefficient is calculated  for a 
symmetric  pair of vortices  at  corresponding  stations on either  semi-span. Such a 
pair  can  be  replaced by the  difference  between two wide  vortices,  the  first  spanning 
the  outer  limits  and  the  second  the  inner  limits of the  vortices  in  the  original  pair 
(sketch 7). The  symmetry  assumed  in  section 3 is preserved, and  following (3 .4)  the 
interference  influence  coefficients  can be expressed as 
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Sketch 6 .  Distribution of Horseshoe  Vortices r and  Control  Points 7 

is equivalent to 

minus 

Sketch 7. Decomposition of a Pair of Horseshoe  Vortices  into  the  Difference 
Between Two Wide Vortices 
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where 

and 

(4- 9) 

(4.10) 

(4.11) 
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5. Analysis of the effect of forward  speed  using  lifting  line  theory  for  circular  and 
elliptic jets 

When the  wing has forward  speed so that  there is an  external  flow,  both  the 
boundary  conditions (2.1) and (2.2) should  be  satisfied at the  slipstream  surface. 
Unfortunately it turns out that these  conditions  cannot  be  jointly  satisfied  for a 
rectangular jet by the  introduction of images  to  represent  the  interference  effects. 
This is proved  in Appendix B. For  the  purpose of analyzing  the  effect of forward 
speed  on a wing in  a wide slipstream , the  rectangular jet is not a convenient  model, 
because  the external region,  with  corners  introduced by the  rectangular  cut-out, is 
very  difficult  to treat mathematically.  The  use of an  elliptic jet as a model  results 
in a much  more  convenient  shape  for  the  external  region. A lifting  surface  theory  in 
an  elliptic jet would require lengthy  calculations. An analysis of a lifting  line  in 
circular  and  elliptic jets will  therefore  be  used  to  gain  insight  into  the  effect of forward 
speed.  The  results of this  analysis  will be  used  to  determine a correction  factor which 
will  allow  the  lifting  surface  theory of the  previous  sections  to  be  extended  through 
the  speed  range. 

For a lifting  line  analysis it is only necessary  to  determine  the downwash at 
the load  line.  Thus if  a horseshoe  vortex is decomposed  into a two dimensional  and 
an  anti-asymmetric  part as in  sketch 4 of section 3 ,  only the two dimensional  part 
need  be  considered.  For a circular jet it was  already  shown by Koning (ref.  1) that 
the  boundary  conditions  for a vortex  pair  are  satisfied  throughout  the  speed  range if 
the  strength of the  image  vortices is multiplied by the  factor. 

P =  
1 - P 2  
1 + P 2  

where is the  velocity  ratio. 

In order  to  analyze  the  interference  potential  due  to  trailing  vortices  in  an 
elliptic jet (sketch 8) , it is convenient to  introduce  elliptic  cylinder  coordinates by the 

Y 
c 

Sketch 8. Vortex Pair in  Slipstream 
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transformation 

y + i z   = a c o s h (  E + i v ) ,  

y = a cosht   cos  7 , z = a sinh 5 s in  7 ( 5 -  2) 

The  lines of constant E are confocal  ellipses  with  foci  at y = f a ,  and  the  lines of 
constant 7 are branches of hyperbolas.  The  line E = 0 is a slit between  the  foci, 
and  the  slipstream  boundary is a t  5 = 4 o. 

Let cp, be  the  potential  due  to a symmetric  distribution of trailing  vortices  in 
the  absence of a slipstream  boundary,  and  let  the  potential  inside  and  outside  the  slip- 
stream be 

The  boundary  conditions  (2.1)  and  (2.2)  then  require  that at t = E 

Let 

Then 

Laplace's  equation  remains unchanged in  the  elliptic  coordinates as 

a2cp a 2  cp 
a t  a ?  

2 + z = o  

Y1'  -z 1' 

Y Z 
- = n2  say 

20 



so that  the  basic  separated  solutions are 

where n must  be  an  integer  to  preserve  continuity  between 7 = 0 and T = 2 T . The 
only  combinations of these  solutions  which are continuous  and  have  continuous first 
deriviatives  across  the  line E = 0 between  the  foci are (ref. 21,  p. 536) 

cosh n 5 cos n 7 , sinh n 5 s in  n 9 

Assuming  that  the  wing is located  in  the  center of the  jet, cp must  be  symmetric 

about  the  vertical  axis  and -- 3 T  ) , and  antisymmetric  about  the  hori- 
T 

2 

zontal  axis ( t7 = 0 and 9). Avo and A s o  must  have  the  same  symmetry.  Also 
cp and A V O  must  vanish  at  infinity,  and Acp- must  be  continuous  across  the  line 
4 = 0. Thus  they  can  be  represented as 

J 

n=1,3,5. .  . 

AP. = 
J 2 Bn sinh n s in  n 7 

n=l ,  3 , 5 . .  . 

n=1,3,5. .  . 

(5. 8)  

(5.9) 

The  corresponding  stream  functions are represented by the  same series with  sin 
replaced by cos n 77 . The  stream  function  for a vortex  pair  was  determined by Tani 
and  Sanuki. For  vortices  at ( t 1, v 1) and ( t 1, 7r - t7 I), where  on  the  centerhe 
either E 1 = 0 or rl1 = 0, they found that 

(5.10) 
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On substituting  the series for (0 v ,  Aco and Avo in  the  boundary  conditions 
(5.5) and (5.6) it follows that 

Bn sinh  n E o  sin  nv = [kcn - (1-P ) An]  sin  nv 

c p n  Bn cosh n t O   s i n   n v  = - C p n  + (1- p )  An]  ne-n (0 sin  nq 

These  are  satisfied if 

whence 

The  ratio of the  width  to  the  height of the  slipstream is 

X = coth E 
(5.11) 

and 

22 



X ) be  defined as 

coth n f o  = (5.12) 

The  complete  solution  for A p j  and AP0 is then  given by (5.8) and (5.9) where 

(5.13) 

(5.14) 

The  variation of the  interference  potential  inside  the  slipstream  with  forward 

1 - P  

1 +p2F,( X )  

2 
speed is determined by the  factor - in  Bn.  Since  this  factor  varies 

from  term  to  term,  the  dependence of the  interference  potential on forward  speed is 
different at different  points  in  space. 

When the  wing  extends  exactly  between  the  foci of the  ellipse  (sketch 9), a 
simple  closed  form  solution  can be obtained. On the  line f = 0 between  the  foci  the 
downwash is 
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Sketch 9. Wing Spanning  Foci of Slipstream 

It can  be  seen  that  the first term of the series for 'P, o r  'Pj represents a uniform 
downwash  between  the  foci.  Thus  for a wing  with  an  elliptic lift distribution  only  this 
term  remains,  and 

'P, = A (cosh E - sinh E ) sin7 (5.15) 

(5.16) 

The  vorticity is contributed  entirely by the  f i rs t   term,  which is discontinuous  across 
the  line f = 0 ,  and  the downwash is contributed  entirely by the  second  term. For a 
given lift the  effect of the  slipstream is simply  to  increase  the downwash by the  factor 

x + P 2  

1 + x 2  

The  wing  thus  behaves as if its  aspect  ratio  were  divided by this  factor.  This is a 
generalization of a result  obtained by Glauert (ref. 23) for  open wind tunnels. Also 
the  interference  potential is 

A'Pj = A ( x -  1) '-' sinh 5 s in  7 
2 

1 + X P 2  (5.17) 

24 



The  dependence of the  interference  potential  on  forward  speed is thus  expressed by 
the  factor 

l - p 2  
1 + X p 2  

P =  (5.18) 

This  formula  differs from the  formula (5.1) for a circular jet by the  appearance of 
AP instead of P in  the  denominator. 

The  foregoing  analysis  shows  that  the  dependence of the  interference  potential 
on  forward  speed is different at different  points  in  space  except  in  the case of a wing 
with  an  elliptic lift distribution  spanning  the  foci of the  ellipse.  However,  when  the 
ratio of width  to  height of the  ellipse is 2 ,  the  span  between  the  foci is already a 

fraction = . 866 of the  slipstream  width.  Thus if X > 2 and  the  wing  extends 

beyond the  foci it may  be  expected  that  the  first  term of the series for  the  potential 
is the  principal  term, so  that a reasonable  approximation would be  obtained by 
assuming  the  whole  interference  potential  to  have  the  same  dependence on forward 
speed  at  all points. 

6 
2 

The  slender body analysis of Graham et al. (ref. 6) can  also  quite  easily  be 
applied  to a wing  in  an  elliptic jet (ref. 24), since  it  only requires two dimensional 
potentials.  The  general  case of a wing of intermediate  aspect  ratio would require 
evaluation of the  antisymmetric  part of the  potential  in  terms of Mathieu  functions, 
but  this  hardly  seems  worth  the  effort  required,  since  the  actual  jet  cross-section 
would not  be  elliptic. 
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6 .  Extension of lifting  surface  theory  to  allow  for  forward -~ speed 

The  analysis of the last section  indicates  that  the two dimensional  part of the 
interference  potential  for a wing in  a circular jet or  a wing  spanning  the  foci of an 
elliptic jet depends in  the  same way  on  forward  speed  everywhere  in  space. If this 
were  true  for  the whole interference  potential, it would mean that all  the  interference 
influence  coefficients R, in  equation (4.2) would vary  with  forward  speed  in  exactly 
the  same way. This  suggests a simple  procedure  for  extending  the  lifting  surface 
theory of sections 3 and 4 to  allow  for  the effec.t of forward  speed.  The  interference 
influence  coefficients R, will  all  be  multiplied by a single  scalar  factor P ,  repre-  
senting  the  strength of the  interference.  Thus  equation (4.2) is replaced by 

C Y =  n 

The  approximation is here  made of neglecting  the  variation at different  points  in  space 
of the way in  which  the  interference  potential  depends  on  forward  speed.  The  exact 
equations  for  the  static  case are obtained by setting P = 1 when P = 0. Also  when 
P = 1 the  wing is in a f r ee   s t r eam,  and  the  exact  equations a r e  then  obtained by 

setting P = 0. It  remains  to  determine a rule  for  estimating P at intermediate  speeds. 

For a wing  in a circular  jet  the  variation  with  forward  speed of the two 
dimensional  part of the  potential is given by (5.1). It  will  be  assumed  that  any 
difference  in  the way in  which  the  antisymmetric  part of the  potential  varies  with 
forward  speed is not important, so  that  the  same  factor  can  be  applied  to  the  whole 
potential.  Thus (5.1) will  be  used  to  determine  the  strength  factor P in  (6.1). 

- 

The  case of a wing in a rectangular  jet is more difficult. It can  be  expected 
that  the  interference  potential  due  to a wide rectangular  jet  will  vary  with  forward 
speed  in  much  the  same way as the  interference  potential  due  to a wide  elliptic jet. 
For a wing  spanning  the  foci of the  elliptic  the  effect of forward  speed is given by 
(5.18). If the  wing  does  not  exactly  span  the  foci  there would be additional t e rms  in 
the  ser ies  (5. 8) for  the  interference  potential,  each of which would vary  in a different 
way  with  forward  speed. It will  be assumed,  however,  that  the first term is the  most 
important  term,  and  that it is also  representative of the  behaviour of a rectangular 
jet. Therefore,  introducing  the  jet  aspect  ratio  ARj  instead of X as a measure of the 
jet  width,  the  strength  factor  for a rectangular  jet  will be  taken  to  be 

1 - P  2 
P =  

1 + A R ~  p z  
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For a  square jet this  gives  the  same  effect of forward  speed  as  for  a  circular  jet. 

Once  the  strength  factor P has been  determined  the  remainder of the 
calculations are  performed  exactly  as  in  section 4. 
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7. Aerodynamic  coefficients 

If the  slipstream  velocity V. is used as the  reference  velocity,  the  aerodynamic J 
coefficients  can  be  determined  from  the  circulation  exactly as in  the  theory  for a free 
wing (ref. 20).  The  local lift coefficient is 

b 
2 -  Gn 

C 

where  c is the  chord.  Using a trigonometric  quadrature  formula,  the  lift  coefficient 
for  the  complete  wing is found to  be 

C L = -  I GN + 2 G, s in  tln 
2N 

where AR is the  aspect  ratio.  The  contribution of each  span  station  to  the  induced 
drag is found by rotating  the  local  lift  vector  back  through  the  local  induced downwash 
angle at the  load  line.  This  angle  can  be  determined  from  the  influence  coefficients 
Ao, and Ron, for  the downwash a t  the  load  line as 

N 

n=l 

Then  assuming  that  the downwash  angle is smaX  the  coefficient of induced drag  can be 
evaluated as 

r N- 1 

L n=l 
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The  effectiveness of the wing in  converting  the  propeller  thrust  into lift can be 
measured by the  ratio of lift to  thrust. Suppose that the jet is generated by an  actuator 
which  causes  the flow velocity  in  the jet to  increase  from  the free stream  velocity Vo 
to a final velocity  Vj,  once  the  pressure is equalized  inside  and  outside.  Then  the 
thrust  can be determined  from  the  increase  in  the  momentum  multiplied by the  mass 
flow,  that is 

where P is the  density  and Sj the jet area. The lift slope is 

1 2 
2 L, = " p  sv j  C L ,  

where S is the wing area  and CL a is the  slope of the lift coefficient.  Also 

and  for a rectangular  jet 

where ARj is the  jet  aspect  ratio  defined by (3.6)  and u is the  span  ratio  defined by 
(3.5).  Thus 

For a circular jet the  same  formula  holds if the jet aspect  ratio is defined as the  jet 
width  divided by its mean  height, or 
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8. Properties of a wing  vertically off center  in  the jet 

The  determination of the  effect of shifting  the  wing  vertically  in  the jet can be 
carried  out  in  detail  using  formulas (3 .7)  - (3.11). At certain  heights,  however it is 
possible  to use symmetry  to  obtain  the  interference  influence  coefficients  in  terms of 
the  coefficients  for a wing  centered  in  the jet without  any extra calculations. 

When the  wing is at a height  z = f - s o  that it coincides  with  the  edge of the 
H 
2 '  

jet, the  images  in  adjacent  zones  move  vertically  to  coincide at alternate  boundaries 
(sketch 10). It follows  that 

where  the  term Anm represents  the  image  coinciding  with  the wing. In the  static  case 
when  the  strength  factor P = 1 the  total  influence  coefficient is then 

z x - )  H = 2 1 An, f Rnm 
2 

whence  the  solution of (5. 2) yields 

CL, (ARj,  z =:) = z C L a  1 (+, AR z = 0) 

z = I l ) = 2 =  2  CL2  2 z = O  

AR * 

Symmetry is also  obtained when  the  wing is at  a height z = f - Then  the 4 .  

image  system  can be resolved as in  sketch 11 into  the  sum of three  patterns  which  are 
symmetric  about  the  wing  and  one  which is antisymmetric.  The  antisymmetric 
pattern  produces no downwash at the  plane of the  wing.  Thus 
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Sketch 10. Images  for a Horseshoe  Vortex at the Edge of a Rectangular  Jet 
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Sketch 11. Decomposition of the  Image  Pattern for a Horseshoe  Vortex Midway 
Between  the Edge and  the  Center of a Rectangular  Jet 
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and  the  loading  and  aerodynamic  coefficients  can  be  determined by substituting  these 
values  in (6.1). 

H 
4 

With the  wing  characteristics known at z = 0 ,  - and :, the  characteristics at 

other  vertical  positions  can  be  estimated by using a power  series.  Let N represent 

CD G,  C L a  o r  - Since  the  characteristics are the  same for equal  displacements up 

or  down use  an  even series 

CL2 ' 

N(z) = N(0) + t l  z2 f t2 z 4 

Then  solving  for t l  and t2  yields 
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9. Typical results 

The  methods of the  previous  sections  have  been  incorporated in a computer 
program  for  the  calculation of the  lift of a wing in  a rectangular  slipstream.  This 
program  incorporates  the  method of deYoung and  Harper (ref. 20) for  the  calculation 
of the  influence  coefficients An, for a wing  in a free s t ream defined in  section 4. The 
program  permits  the  user  to  specify  the  number of vortices  to  be  used  to  represent 
the wing. Calculations to determine  typical  trends  have  been  made  using 8 vortices 
per  semi-span.  The  results of some of these  calculations  and of some  additional  hand 
calculations are presented  in  fig. 1-4. 

Figure 1 shows  the  effect of jet width  on  the  characteristics of rectangular 
wings at velocity  ratios of 0, . 6  and 1.0.  Figure 2 shows  operational  curves of the 
behaviour of some  typical  wings  through  out  the  speed  range. All coefficients are 
referred  to  the  slipstream  velocity. With this  convention  the  lift  coefficient  decreases 
as the  external  velocity is decreased  because of the  reduced  mass flow influenced by 
the wing. When the  aircraft is static  the jet deflection  angle 8 equals  the  ratio of lift 
to  thrust.  Figure  3  shows  the  static  turning  effectiveness O/a = L a  /T.  For a given 
jet  aspect  ratio  the  turning  effectiveness  increases  towards a limiting  value as the 
wing  chord is increased  or its aspect  ratio  reduced.  The  turning  effectiveness is also 
increased by an  increase  in  the  aspect  ratio of the  jet  or  reduction of its height: it is 
easier to  deflect  an  airflow  which is close  to  the wing. 

Sketch 12 illustrates  the  influence  which  these  trends  could  have  on a design. 
When the  aircraft is static  the  absence of an  external flow prevents  parts of the wing 
outside a jet  from  influencing  conditions  in  the  jet,  and i f  there are several  jets  they 
do not interact,  so  that  the  total  lift is simply  the  sum of the  independent  contributions 
from  each  jet.  The  performance of a wing in a large  square jet is compared  with its 
performance  in  four  small jets and  in a single  wide  jet of aspect  ratio 4. The  wing 
has a constant  chord  equal  to  the  height of the  small  jets o r  the  wide  shallow  jet. In the 
large  square  jet   La/T = .365. In the  four  small jets it is .480  because of the  increase 
in  the  ratio of wing  chord  to jet height,  and  in  the  wide jet it is further  increased  to 
.835 by the  elimination of the  gaps.  The  return  to  atmospheric  pressure  in  each  gap 
causes a loss of circulation  which  extends  into  the jets. It is evident that if several  
propellers  are  used it is beneficial  to  place  them  close  enough  to  each  other  to  ensure 
that  their  slipstreams  merge. Also a larger  fraction of the  thrust is converted  into 
lift when a single  large  propeller is replaced by a row of small  propellers  arranged  to 
give a shallow jet of the  same width.  This would compensate  for  the  reduction  in  thrust 
from a given  input of power,  attendant upon the  increase  in  disc  loading.  The  power  ab- 
sorbed by an  ideal  actuator of area S is proportional  to  Vj3and its thrust  to  $Vj2, so  
that if the  power  were  fixed  in  the  case  illustrated,  the  thrust of the  wide  actuator would be P 
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Sketch 12. Effect of the  Disposition of Jets on  the  Static  Turning  Effectiveness 
of a Rectangular Wing 

(l/4%)l/3 = .630 of the  thrust of the  square  actuator. At a given  angle of attack  the  lift 
of the wing  in  the  wide  jet would then be .630 x .835/. 365 = 1.44 times its lift  in  the 
square  jet.  It  thus  appears  that  the  propellers of a deflected  slipstream STOL air- 
craft  might  well be optimized  for  the  cruise  without  penalizing its low speed  perfor- 
mance. 

Finally  figure 4 illustrates  the  effect of the  vertical  position of the  wing  in  the 
jet for  the  case of a static low aspect  ratio wing.  The lift is maximized  and  the  drag 
minimized  when  the  wing is centered  in  the  jet.  It  should  be  remembered  that  the 
effects of momuniform  axial  velocity  and  rotation  in  the  slipstream have  been  ignored 
in  these  calculations.  In  practice  there  may  be  advantages  in  locating  the  wing off the 
vertical  center of the  jet. 
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Figure l(b). Rectangular Wings Spanning  Rectangular Jets 
p = . 6  
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Figure l(d). Rectangular Wings  Spanning Circular  Jets 
Static Case: p =o 
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Appendix  A  Summation of Contributions of Image  Vortices 

The  evaluation of the  interference  downwash  for a single  horseshoe  vortex 
requires  the  summation of the  double series in  equations (3 .8 )  and  (3.11)  for f(a) and 
fx(a). Unfortunately  these  do  not  converge  very  rapidly.  However,  they  may  be 
simplified  when  the  wing is vertically  centered  in  the jet. Since it is only necessary 
to  evaluate  the  downwash  in  the  plane of the  wing,  then  both f and { can  be set equal 
to  zero.  Also known analytic  results  can  be  used  for  much of the  summation. 

When = 5 = 0 (3.8) becomes 

n=l 

m 

1 
n2 + 2a c -2 2 n2 +T ARj m=l m2 - a2 m = l  n=l 

r 1 
-(-l)rn 

Now the  following  summations  are known results (ref. A l ,   p .  264) 

m 

1 1 
n2 + a2 2a - ( x a  coth ~ a - 1 )  ” 

n=l 

n=l 

Using these  (Al)  becomes 

m 

-1 AR 
f(a) = 4na + 4  coth  xARja + 4 

m=l 

-(-l)m [coth T A R .  (m-a) - coth  rAR.(m+a) J J 1 
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This  single series converges  rapidly  when a is small. When a approaches 1 a 
relation  between f (1-a) and f (a) can be used. (A4) can be expanded as 

AR  AR 
f(a) = - -' f coth  sAR.a + coth  aARj(l-a) 

4 r a  4 J 4 

AR . AR 
- - cothnARj(l+a) - 

4 
coth~ARj(2-a) 

4 

AR 
4 

+ A coth  rARj(2+a) + . . . . . 

Then  substituting (1-a) for a in (A5) 

AR  AR 

4 4 a(1-a) 4 J 
f(1-a) = -' + coth7rARj(l-a) + coth7rAR.a 

AR  AR 
- coth  rARj(2-a) - l c o t h  rAR.(l+a) 

4 

AR 

4 

4 J 

+ cothrARj(3-a) + . . . . . 

Subtracting (A6) from (A5) gives  the  relation 

1 f(a) = f(1-a) + - 

Since  the series (A4) converges  very  rapidly  in  the  desirable  range of 1/2 5 AR. < m , 
it can  be  truncated after a few terms.  Expanding  the  coth  terms  the  following 
formulas are finally  obtained  for  computing f(a): 

1 
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1 AR AR f(a) = -- + coth AARja + coth A ARj(1-a) 

AR 
47ra 4 

- l c o t h  .rrAR.(l+a) 
4 J 

2 1 + - ARj 4 A ARj+e2 A ARj 8 *ARj 
e 

+ 1 
12 T ARj sinh2 7rAR.a 

e J 

- 4ARj (e8:ARj + e 12 TAR 3 j 

+ 
16  *ARj sinh 2 TAR .a sinh2*AR .a (A&) J J e 

when a -, 0 

4 2 - - 
8 T ARj 12 T ARj e e 

when  ARj = 0: 

49 



when AR = 0 and a+O 
j 

f(a) = - a 
.rr 
24 

also 

f(-a) = -f(a) 

and  when > 1/2  use (A7) 

Similar  methods  can  be  employed  in  the  evaluation of fx(a). When = { = 0 
(3.11)  becomes 

The  following known results  may  be  used (ref. A l ,  p.  267  and  p. 811) 

m =1 

m 

mk 
-(-l)rn - 

- (1-21-k) l ( k )  

m =1 
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where +' is a trigamma  function  and { is a Riemann  Zeta  function.  Then (A9) may 
be written as 

1 - n.2 csc ?r a cot na + $1 

a 

+- A R 2  q AR-a 

47r n2 [ n2 + (ARja) 2 ] 1/2 n=l 

+ 

2 m -3 
m 

ARj ( m a )  
47r n2 + ARj2(m+a) 2 ] 1/2 

m =1 

ARi (m+a) 1 + 
[n2 + A R ~  2 ( m a )  z]3/2] 

ARj  (m-a)  ARj  (m-a) + 
.[n2 [ n2+ARj 2 (m-a)'] 

A relation  similar  to (A7) can  be found  between fx(a) and f,(l-a) 

fx(a) = fx( 1 -a) + - [ ' 2 " 4  
16* (1-a) 

and  this  may be used as before  to  limit  the  range  to a < 1/2.  The  same series in n 
appears  in  three  places  in (A12). It has  been found that  the  summation 

1 + .6995 

(1.0034+e 



is accurate  to  four  figures.  Incorporating  this  in  (Al2)  the  formulas for computing 
fx(a) are finally  reduced  to: 

.6995 

m 
A 
" - 

24 m =1 

(m-a) AR. 
2 

+ - .6995  (m+a) 

- .6995  (m-a) I 
(A15a) 
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when a 4 0 ,  using  term by term  differentiation 

'i ((3)  ARj3 
W 

f,(+ 3 2 0 +  -" 
16 x 2 1  12 m=l 

\ 

1.0034 

-(-l)mkl.  7058 + -2) 3/2 

1.7058 + 

ARj2 

(Al5b) 

when  AR. = 0 
J 

1 - T C S C T ~  cot *a + 4'  1 (A15c) 

when AR = 0 and a - 0 j 

also 

f,(-a) = -fx(a) 

(A15d) 

and  when a > 1/2  use (A13). 
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Appendix B Limitations " of - the . Representation of the  Interference  Potential by Images 

The  treatment of the lift of a wing in a static rectangular jet r e s t s  on  the 
representation of the  interference  potential by images.  It is the  purpose of this 
appendix  to  determine  whether this method  can  be  extended  to  allow  for  forward 
speed. Two cases are examined: 

1. When the  jet  passes  through a s t r ip  of infinite  width but limited  height. 
2. When the  jet  extends  through  an  infinite  quadrant  in  the  crossplane so that 

it has a single  corner. 

In each  case  the  interference  potential  for a single  trailing  vortex is considered, 
and  the  boundary  conditions  to be satisfied are those given  in  section 2 of the text: 

where 

Note that  the  boundary  condition  for a closed winc A tunnel 

is obtained by setting I-( = a, in (B2). 

The first case has been  treated by von  Karman (ref. Bl). The  analysis is repeated 
here  for  convenience. It is found that the  interference  potential  can  be  represented 
by images,  but that the  strength of each  image has a different  dependence  on I-( , so 
that they  cannot all be multiplied by a single  strength  factor. In the  second case it 
is found that  the  interference  potential  can only  be  represented by images  in  the  cases 
of the  open  and  closed  windtunnels ( ru  = 0 and P = a, ). Thus  the  image  method is not 
strictly  applicable  to  the  case of a wing  in a rectangular  slipstream at forward  speed. 
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Case 1: Interference  for a Vortex  in a Slipstream  Filling  an  Infinite  Strip 

Consider first a unit  vortex  lying  parallel  to  the x axis in a slipstream 
occupying  the  whole  space  to  the left of a vertical  boundary at y = a (fig.  B1). If 
the  vortex is at y = y1, its potential  in  the  absence of a slipstream  boundary would be 

Consider  also a unit  vortex at the  image  point  y = 2a - y1 obtained by reflecting  the 
original  vortex  in  the  boundary. With the  addition of a constant its potential would be 

G = F (2a - y,) + constant  (B5) 

The  constant,  which  does not represent  any  flow,  can  be  chosen so that on  the 
boundary 

aF  aG 
dY aY 
-" - 

Suppose that  the  potential  in  the  slipstream is 

V . = F + P G  
J 

and that the  potential  outside it is 

V o = Q  F (B9) 
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or 

Consider now a slipstream  occupying  an  infinite  strip  parallel  to  the z axis 
with  boundaries at y = % (fig. B2). Considering  each  boundary  separately,  the 
original  vortex at y = -y1  gives rise to two primary  images of strength P at 
y = 2a - y1  and  y = -2a - y1. But now at the  right hand  boundary  the  potential  due  to 
the  primary  image  on  the left is just  like  the  potential of the  original  vortex,  and  must 
be  compensated by the  introduction of a secondary  image  on  the  right  with  strength 
P2. Similarly  the  primary  image  to  the  right  gives rise to a secondary  image  to  the 
left. The  secondary  images  in  turn  must  be  compensated by tert iary  images,  and by 
repeated  reflection a series of images of successively  higher  order is obtained. 
Thus  the  potential  in  the  slipstream is 

+ p2 [F(4a-yl) + F(-4a-yl)] . . . + Constant  (B11) 

where F(yl) is the  potential of a vortex at y = y1  given by (B4). Also the  potential 
to  the  right of the  slipstream  boundary is 

VO = Q [F(yl) + P F(-2a-yl) + P2 F(-4a-yl) . . .] + constant  (B12) 

and  the  potential  to  the  left is given by a similar  expression.  The  downwash  in  the 
slipstream is 

1 + 1 
Y-2a+Y1  Y+2a+Y1 

+ (B13) 

Exactly  the  same  arguments  may be used  when  the  infinite  line  vortex is 
replaced by a horseshoe  vortex.  Thus  the  three  dimensional  interference  potential 
due  to a slipstream  occupying  either a vertical or  a horizontal  strip of infinite  extent 
can  be  represented by images. When the  aircraft  has forward  speed,  however , these 
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images are not  multiplied by a constant  strength  factor P,  but  images of successively 
higher  order are multiplied by successively  higher  powers of P. 

Case 2: Interference  for a Vortex  in a Slipstream  Filling a Quadrant ”- - . 

As the  simplest  case of a slipstream  with a cross-section  including a corner 
consider a slipstream  filling  an  infinite  quadrant  between  the  negative  y  and z axes 
(fig. B3). The  only  possible  images are then  the  reflections of the  original  vortex  in 
the  y  and z axes and an  image  in  the  quadrant  opposite  the  slipstream  which is obtained 
by reflection of either of the  primary  images in the z o r  y  axes  respectively.  Let  the 
potential of the  original  vortex  be F1, and let the  potentials of vortices at the  image 
points  in  the  other  quadrants be F2, F3,  and F4 respectively  where  the  constant 
terms  in  the  potentials are chosen so that on the  y  axis 

Fl = - F  F2 = - F  4 ’  3 

and on the z axis 

F = - F  F = - F  1 2 ’  3 4 

Denote  the  potentials  in  the  four  quadrants by (PI , 9 2 ,  (P3, and ‘474. In  the  second, 
third and  fourth  quadrants  there  can  be no singularity. Therefore  let 

(P2 = Q1 F1 + Q2 F2 + Q4 F4 

503 = R1 F1 + R2 F2 + R3 F3 

Now there is no slipstream  boundary  between  the  second  and  third  quadrants. 
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Thus  on  the  positive y axis 

(02 = (P3 

whence in  view of (B14) and (B15) 

aF2  aF2 
a z  a Z  

But since,  F1, F2, and - are  distinct  functions  these  can only be satisfied 

if 

Q1 - Q 4  = R 1   - R 4  

Q1 + Q4 = R1 + R4 

Q3 = -R2 

Q3 = R2 

or 

Q1 R1 , Q, = R4 , Q3 = R2 = 0 

But by a similar  argument  applied  to  the  third  and  fourth  quadrants it also follows 
that 

R4 = 0 

59 



Thus  the  only  possible  representation for the  potential  in  the  second,  third  and 
fourth  quadrants is 

where Q is a constant  to  be  determined. 

Suppose that  the  potential  in  the  slipstream is 

(PI = F l + P  F + P  F + P 4 F 4  2 2  3 3  

Then  the  boundary  conditions (Bl)  and (B2) are satisfied  on  the  negative  y  axis if 

It is thus  necessary  that 

1 - P 4 =  P Q  

I* (1 + P4) = Q 

P - P 3 = 0  

r (P2  + P3) = 0 

2 

Similarly  the  boundary  conditions on the  negative z axis  require that 

1 - P 2 =  /.LQ 

~ ( 1  + P2) = Q 

P - P  = o  
4 3  

p(P4 + P ) = 0 3 
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If p is finite  and  not  zero  then 

P z = P 3 = P  = o  4 

whence 

which is only  possible if 

p = 1 ,  Q = l  

This is the  trivial case when the  slipstream  boundary  vanishes.  The  open wind- 
tunnel is obtained  when 1 = 0. Then  the  well known solution 

is obtained.  The  closed wind tunnel is represented by P = a, . Only the  terms 
containing P need  be  retained,  and  the  solution is 

P = P  =-1, P =1,  Q = O  
2 3  4 

It may be concluded that the  boundary  conditions  cannot  be  satisfied by 
introduction of images  except  in  the  cases of the  open  and  closed wind tunnels. 

the 
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PART 2 

ENGINEERING METHOD FOR 

PREDICTION O F  CHARACTERISTICS 

O F  PRACTICAL V/STOL CONFIGURATIONS 
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1. Introduction 

In this  second  part of the  report, a method is given  for  estimating  the  aero- 
dynamic  characteristics of practical  configurations for propeller-driven V/STOL 
aircraft.  The  results of a number of sample  calculations are presented  to  establish 
the  correlation of the  theory  with  existing  experimental  data. 

The  additional lift required  to  permit a V/STOL aircraft to  fly at low speeds 
may  be  generated by tilting  the  propeller-wing  combination or  by lowering  flaps  to 
deflect  the  slipstream, or by a combination of these  methods. In order  to  estimate 
the  lift and drag of an  inclined  propeller-wing  combination  (sketch l), it is necessary 
to  allow  for  the  vertical  and  horizontal  components of 

(1) the  thrust of the  propellers,  
(2) the  normal  force  in  the  plane of the  propellers  due  to  the  inclination of 

(3) the lift and  drag of the  wing  under  the  influence of the  propeller  slipstream. 
the inflow velocity, 

N 

wing 

Sketch 1. Inclined  Actuator-Wing  Combination:  Actuator  Incidence i 
Wing Incidence iw, Slipstream Downwash  Angle e 

j ’  
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The  propeller  slipstream has three principal effects on  the wing: it increases 
the  dynamic  pressure, it a l ters   the wing  angle of attack,  and its interference  with 
the flow over  the  wing  causes  changes  in  the lift slope  and  the  induced  drag  factor. 
The  theory of Part 1 may  be  used  to  estimate  the  effect  due  to  interference.  In 
section 2, some  simple  formulas are developed  which  approximate  the  theoretical 
results  to  within  about 3% in  the  range of practical  calculations;  these  will  be 
used  to  eliminate  the  need for detailed  calculations.  The  theory  strictly  applies 
only to a wing that is completely  contained  in a single jet. If the wing  extends beyond 
the  sl ipstream, or spans  several  slipstreams,  there  will  be  additional  interference 
effects which  have  not  been  included. It is assumed, however , that the  effect of a 
jet on  the  part of the  wing  outside  the jet is relatively  small. A simple  method of 
superposition  will  therefore be used  to  calculate  the  lift  and  drag of a wing  with 
sections  in  the free stream.  The  increase  in  the lift of each blown part  of the  wing, 
treated as if it were   an  independent  planform, is added  to  the lift of the  whole  wing 
in  the  free  stream.  The upwash  outside  an  inclined jet is approximated by treating 
the  jet as an  infinite  falling  cylinder.  Slipstream  rotation  will  be  ignored; it is 
assumed  that  the  decrease  in  lift  due  to downwash  on  one side of the  slipstream 
would be  about  equal  to  the  increase  in  lift  due  to  upwash  on  the  other  side, s o  that 
the  estimate of total lift in  the  slipstream  should be reasonably  accurate as long as 
the  wing  spans  the  entire  slipstream. (When propellers  are  placed at the  wing t ips ,  
they a r e  usually of large  diameter so that most of the  lift is produced  directly by 
the  thrust of the  inclined  propellers , and  the  contribution of the wing is small .  ) The 
effect of flap  deflection is considered  in  section 4 and  large  angles of attack are 
treated  in  section 5. 

The  complete  procedure  for  estimating  the  forces of a wing propeller 
combination is described  in  section 6.  DeYoung's method  (ref. 2) is used  to 
estimate  the  forces on an  inclined  propeller.  The  drag  due  to  lift is assumed  to be 
the  principal  contribution  to  drag,  and s o  profile  drag is not estimated, though it 
would not  be  difficult  to  add  an  allowance for it. Section 7 contains  the  comparison 
of theoretical  and  experimental  results. 
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Notation  for Part 2 

Symbols  unique  to Part 2 are defined as they are introduced  in  the text. In 
addition, all the  formulas  for  prediction of the  aerodynamic  characteristics of a 
propeller  driven V/STOL aircraf t  are collected  in  section 6; and  for  convenience, 
the  definition of the  symbols is included  there.  together  with  the  formulas  in  which 
they are used.  Those  symbols  used in  both Pa r t s  1 and 2 a r e  defined in the 
notation list, page 4. 
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2. Formulas  for-  wick - estimation o f  the ~ ~~~ lift and-dyag~ of a wingspanning a slipstream. 

Estimation of the lift by the  full  theory of Part 1 requires  lengthy  calculations. 
In  this  section,  simple  formulas are derived for a wing of constant  chord  fully 
immersed  in a slipstream.  These  approximate  the  results of the  full  calculations  to 
an  accuracy  which is quite  acceptable  for  evaluation of a proposed  design. 

When a wing  immersed in a slipstream is compared  with a wing in a stream 
of the  same  velocity  extending  through  the  whole  space,  the  essential  difference is a 
reduction by the  ratio p of the  mass flow outside  the  slipstream,  and  consequently a 
reduction  in  the  mass flow  influenced by the wing.  In the  case of a free  wing,  the 
mass flow that is hfluenced is that passing  through a tube of a rea  x b2/4  just 
containing  the  wing  tips.  The  smaller  mass flow influenced by the wing in a slipstream 
is thus  equivalent  to a reduction  in  the  effective  span  or  aspect  ratio of the wing. 

The lift of the wing in  the  static  case will first be  considered.  Compared  with 
a free wing, a given lift is developed by deflection of a smaller  mass flow through a 
greater downwash  angle. As a first approximation,  assume that the  additional 
downwash  due  to  the presence of the jet boundary is a constant  fraction  p of the 
downwash of the  wing  in a free stream.  (It was shown in  section 5 of Part 1 that this 
is exactly  true  for a wing with  an  elliptic lift distribution  spanning  the  foci of an 
elliptic jet. ) In this case,  the  jet  effect is equivalent  to a decrease in the  effective 
aspect  ratio  from AR to 

AR ARo = - 
l + P  

According  to  lifting  line  theory,  the lift slope would then  be 

aO 
C L a o  = 

1 L  
a0 (1%) 

J . 8  

x AR 

where a,, is the lift slope of the two dimensional  airfoil.  Also,  the lift slope 
C Lal ofvthe  wing in a free stream would be 

CLal = 
I +  

TAR 
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Thus  the  ratio of the lift slopes would be 

Accepting  the  thin  airfoil  value  2 T for a,, this  suggests  the  functional  form 

where a depends on the jet aspect  ratio. 

The  results of full  calculations  for  rectangular  wings  spanning  rectangular  jets 
a r e  shown in  fig. 1. It  can  be  seen that for a fixed jet aspect  ratio,  each  curve of 
CLa0 

CL,1 j '  
has a point of inflexion for a value of  AR that is less than AR but  to  the 

right of this,  the  curves  have a shape  consistent  with  the  proposed  form. In fact, 

AR > - by good agreement is obtained  for  values of AR. from 1 to 4 and - 
taking  the  following  values of a: 

1 
2 J 

ARj 

AR a 

1 3 . 3 5  
2 4.8 
3 6. 7 
4 8.8 

This  dependence of a on  AR.  can  be  rather  well  represented by 
J 

2 . 5  a = 2ARj + + AR 
j 
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Thus,  in  the  specified  range of AR and AR the static lift of a rectangular wing 
spanning a rectangular jet can  be  determined  from its lift in a free  s t ream by the 
formula 

j ’  

It is in fact unlikely  that a practical  design would fall outside  the  range  in  which  this 
formula is valid;  since,  for a wing of constant  chord c spanning a jet of height H 

so the  limitation is that  the  wing  chord  should  not  be  more  than  twice  the  jet  height 
or propeller  diameter. 

The  dependence of the lift on  the  ratio ~r of the  external  velocity  to  the  slip- 
stream  velocity  can be treated  in a similar way. For the  case of a wing  spanning 
the  foci of an  elliptic  jet, it was found in  section 5 of Part 1 that the downwash is 
increased by the  factor 

x + P 2  

1 + X P 2  

This is equivalent  to a decrease  in  the  effective  aspect  ratio  to  the  value 

where X is the  ratio of width  to  height of the  slipstream.  According  to  lifting  line 
theory,  the  corresponding lift slope would be 

a0 
CL, = 

cc 1 +  a0 
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When P = 0 ,  the  effective  aspect  ratio  and lift slope  become 

AR ARo = - x 

C L a 0  = 
1 +  a0 

?r ARo 

Also,  the lift slope  for a free s t ream is 

C L a l  = 
&O 

1 +- 
T A R  

Then 

where 

Thus 
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The  dependence of the  wing characteristics on  forward  speed is here  expressed  in 
t e rms  only of the lift in a free stream  and  the lift in a static jet,  with no explicit 
reference  to  the two dimensional lift slope or the  aspect  ratio. It will  be  assumed 
that  the lift of a wing in a rectangular jet varies  with  forward  speed  in a similar 
way,  where,  for  the  rectangular  jet,  the jet aspect  ratio  AR-  should be used  instead 
of X as a measure of jet width. This  leads  to 

J 

Simple  formulas  can  also  be found for  the  induced  drag.  Let r denote - C D  
c L2 

and  let ro, and rp be the  values of this  ratio  for a wing in a static  jet,  in a free 
s t ream,  and In a slipstream  with  velocity  ratio p . On impecting  the  results of the 
full  calculations  for  rectangular  wings  spanning  rectangular  jets, it is found that  for 

a fixed jet aspect  ratio AR the  ratio - is almost  independent of wing aspect  ratio. L O  

j y  
n '1 

Some  typical  values of - are tabulated  below: L O  

rl 

ARj AR = 0 AR = 4 AR = 8 

.5 1.45 1.45 1.46 
1 1.57 1.57 1.57 
2 2.15 2.14 2.12 
4 3. 63 3. 61 3.54 
8 6. 73 6.69 6.56 

The  variation of - with AR. when AR = 4 is plotted  in  fig. 2, and it can be seen 
r0 
r, J 

that it 
by the 

I 

is almost  linear when AR- > 2. It has been found that it is well approximated 
formula 

J 

73 



In  the  case of forward  speed, - r P  should  approach - 1'0 

l-1 
when p approaches 

'1 
0 ,  and it should  approach 1 when I.( approaches 1. Also,  the  assumed  variation of CL 
with p implies a factor 1 + AR p2  in  the  denominator of the  effective  aspect  ratio. 
This leads  to  the  formula j 

rl 1 + A R ~ P  2 

These  formulas  permit  the lift and  drag of a wing  spanning a slipstream  to be 
determined  from  the  lift  and  drag of the  same wing in a free  s t ream. Equations  (2.1) 
and  (2.3)  give  the  static lift and  induced drag,  and  equations  (2.2)  and  (2.4)  may  then 
be  used  to  calculate  the  effect of forward  speed.  The  formulas  have  been  compared 
with  the  results of the  full  calculations  for  rectangular  wings  spanning  rectangular 
jets over  the  full  range of forward  speed  from P = 0 to B = 1. For jet  aspect  ratios 
from 1 to 8 and  wing aspect ratios greater than  half  the jet aspect  ratio,  the 
maximum e r r o r  has been found to be  about 3%. 

For a rectangular wing  spanning a circular  jet, it has been found similarly 
that a good approximation  to  the  lift is given by 

and  to  the  drag by 

- = 1.68  
r0 

'1 

" ' p  1.68 + .32 ,u2 

rl 
- 

1 +P2 
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3.  Lift  and  drag of a wing  partially  immersed  in  one or more  sl ipstreams 

In  many  designs,  the  wing  tips  extend beyond the  region of the  slipstreams. 
Also, even if the  propellers  on  each  semispan are close enough for  their  slipstreams 
to  merge,  the  presence of the  fuselage  will  ensure  separation of the  slipstreams  on 
the two sides.  It is thus  necessary  to  consider  the case of a wing that extends  through 
more  than  one  slipstream. When the aircraft is static,  the lift is simply  the  sum of 
the  independent  contributions of each  part of the wing that is in a slipstream. When 
the  aircraft  has  forward  speed,  however, not  only  will there  be a contribution  to  the 
lift from  the  part of the  wing  in  the free s t ream,  but also  the  presence of a part  of 
the  wing beyond each  slipstream  and of other  slipstreams  will  cause a modification 
of the flow over  the wing inside  each  slipstream.  These  additional  interactions 
have  not  been  cosidered  in  the  theory,  and,  strictly, would require  recalculation 
of the  circulation  in  each  slipstream.  Instead,  an  approximate  estimate of the lift 
will  be  derived by a simple  method of superposition.  This  procedure is consistent 
with  the  aim of avoiding  massive  calculations,  and it leads  to  an  estimate that 
reduces  to  the  usual  result  for a wing in a free  stream when the  velocity  ratio is 
unity,  and  to  the  sum of the  independent  contributions  from  each  slipstream when the 
aircraft  is static. 

The lift will  be  calculated as the  sum of the lift of the  whole  wing at f ree  
stream  velocity  plus  the  increase  due  to  the  part of the  wing  in  each  slipstream, 
calculated as if that part  were  an  isolated  planform, not  extending beyond the jet. 
Thus,  the  increase  will  be  estimated  simply as the  difference  between  the lift of 
that  planform if it were  an  independent wing  in a free  stream , and its lift if  it just 
spanned a slipstream.  Let V be  the  external  velocity  and Vj the  jet  velocity.  Then 
if  Swj is the  area of the  wing  inside a jet of width Bj,  the  increase  due  to  the  jet is 

where CL, is the lift slope of the  part of the  wing  in  the jet at a velocity  ratio 
jp - 0  

J 5 A  

p = -  , calculated  for a planform of aspect  ratio ; CLal is the lift slope of 
V j  % 

this  planform when P = 1 , or   the lift slope  in a free s t ream; aw is the  angle of 

attack of the wing in  the  jet;  and cy is the  angle of attack of this  section in  the 

free stream. The angle of attack of the wing in  the jet is reduced  from  the  angle 

jp 

w j  1 

75 



of attack  in  the free stream by the jet downwash angle e . It can  be  seen  that AL 
is the lift in  an  independent  slipstream when  V = 0. Also, AL = 0 when V = V., 
provided that in this case a w j p =  awjl. In  fact,  an  inclined  propeller  can  create 
a downwash at zero  thrust ,  and it is possible  to  allow  for  the  resulting  interference 
by using separate estimates of a w j l  and a w j p  when V = Vj. 

J 

When a slipstream is inclined  to  the free stream , it will  also  create an 
external upwash. This  can be approximated by regarding  the  slipstream as a 
falling  cylinder.  The upwash at a distance of y  from  the  center of the jet is then 

If y1 is the  distance  to  the wing tip,  the  average  upwash  over  the  span beyond the 
jet is then 

Y 1  

3 
2 

Bj 
2 

4Y 
c e 

Thus  the  average  upwash  over  the  external  part of the wing is approximately  equal 

to , where S is the  total wing area. The  increase  in lift due to  the  upwash 
Swj e 

S 

may  then  be  estimated by multiplying  together  the area of the unblown part  of the 
wing,  the  increase in  the  angle of attack  due  to  the  upwash of all the  jets,  and  the 
lift slope CL calculated  for  the  complete wing  in a free  stream. 

a 1  

76 



Provided that the  angle of attack a in  the free stream  and  the jet downwash 
angles are small,  the  total lift can now be  calculated  from  the  relation 

jets jets 

jets 

where v is the  reference  velocity,  which  might  be  V or Vj,  and S is the  reference 
area. This  equation  can be written as 

jets jets 

where CLf  and a are the lift coefficient  and  angle of attack  attributed  to  the 
unblown part  of the  wing 

C L f = c L a 1  Cif 

"f = u +  py 
jets 

and  CL. is the lift coefficient  attributed  to  each blown section 
JP 
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The  angle of attack  should  be  measured  relative  to  the  zero lift angle. It 
should also  be  remembered that the lift in  each jet will  be  perpendicular  to  the  local 
flow  velocity, so that CLj, actually  represents a force which is rotated  back  through 
an  angle t . Since  the  theory of wing jet interaction has only  been  developed for a 
wing that is symmetric  in  the  jet,  the  planform  in  the jet must be replaced by a 
rectangular  planform of equal area when  the sl ipstream is on  one  side of a tapered 
wing. 

The  induced  drag  can be estimated  in a s imilar  way.  Let  the  average  induced 
downwash  angle  be 

so that  the  induced  drag at small  angles of attack is 

The  change  in  the  induced  drag of the  part of a wing in a jet will  be  calculated as 
the free s t ream lift of this section  multiplied by the  change  in  the  induced  downwash 
angle,  plus  the new induced  downwash angle  multiplied by the  change  in  the lift. 
If the lift coefficient of this  part   in  the  free  stream is assumed  to be 

CLjl = CLal (y (3 .6 )  

the  change  in  the  drag is 
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where CLj, is calculated  from ( 3 . 5 ) ,  rjp is the  induced  drag  factor of the  part of 
the  wing  in  the jet at a velocity  ratio I ( ,  calculated as if it were  an  independent  plan- 
form  not  extending beyond the  jet,  and r is the  induced  drag  factor of this  planform 
if it were  an  independent  planform  in a free stream. 

j l  

If it is assumed that this par t  of the  wing is the  source of a fraction of the 
total  drag  in  the free stream  proportional  to its a rea ,  its contribution  to  the  drag  in 
the free s t ream would  have  been 

D = s,. v2 r1 cLj l  2 
J 

where r1 is the  induced  drag  factor of the  complete  wing  in  the  free  stream.  The 
drag  to be attributed  to  the  part of the wing  in each jet is then D + AD plus a con- 
tribution  due  to  the  rotation of the lift back  through  the  downwash  angle c . 

The  drag of the unblown part  of the wing  will  be  calculated as the  lift of this 
section  multiplied by the new induced  downwash  angle,  which  may  be  estimated as 
the  lift  multiplied by the  induced  drag  factor rI of the  free wing. The lift is given 
by (3 .3)  and ( 3 . 4 ) .  

Finally, if the  angle of attack and  the jet downwash  angles are   small ,   the  
total  induced  drag  may be calculated  from  the  relation 

jets  jets 

where 

CD = r1 CLf 2 
f 

+ CLjp .> 
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and 
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4.  Effect of flaps 

Lowry  and  Polhamus  have  described a quick  method  for  estimating  the  effect 
of flap  deflection  on  the lift of wings of finite  span (ref. 3).  With  flaps  deflected  the 
lift coefficient  can be expressed as 

where CL, is the  lift  slope of the  planform , 6 is the  flap  deflection  and a / 6 the 
three  dimensional  flap  effectiveness. If the  three  dimensional  flap  effectiveness is 
expressed  in  terms of the  effectiveness of the  same  flap  applied  to a two dimensional 
airfoil as 

then  according  to Lowry  and  Polhamus K depends  to a first approximation  only on 
‘Y/6 2D and  the  aspect  ratio AR. They  give curves  for K based  on  lifting  surface 

calculations. 

To facilitate  the  incorporation of this  method  in a computer  program it is 
desirable  to  replace  the  curves by a formula. Now in  the  limit of low aspect  ratio, 
slender wing  theory  indicates  that  the  lift is completely  determined by the  trailing 
edge  angle, s o  that (Y / 6 = 1 ( ref .  4). Also K 4 1 as AR ”+ m by definition.  This 
suggests  the  form 

= a’62D + 
1 + F  

where F is a function of a/J2,, and AR which -+ 0 as AR + m . From Lowry 
and  Polhamus’  curves  the  following  table  can  be  constructed. 
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K F ff/62D = . 2  AR F 

4% 
1 1.73  .895  2.0 
2 1.49  1.43  3.20 
4 1.30  2.50 5.60 
8 1.16  4.86 10.9 

= . 4  AR K F 
F 

2D 

1 1.39 1 .14  1 . 8  
2 1.25 2.0 3.16 
4 1.14 3.72 5.88 
8 1.08 7.29 11.5 

K F a/S 2D = . 6  AR F 

1 1.20 1.35 1.75 
2 1.13 2.48 3.20 
4 1 . 0 8  4.26 5.50 
8 1.04 10.5 13 .5  

It can be seen  that is more  or   less  independent of a/& 2 D ,  depending on 

F 
AR only, and  it  that ,- can be quite  well  approximated as 

F AR + 4.5 
= AR AR + 2 
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Substituting  for F finally  leads  to a simple  formula  for  computing a/6 , 

d G  + a /62D AR + 2 
AR + 4.5 AR 

AR f 4 . 5  AR 
AR + 2 

Assuming  that a deflected  slipstream  or tilt wing aircraf t  would have  full 
span  flaps,  the  application of this  procedure is nevertheless  complicated by the  fact 
that the  effective  aspect  ratio of a section of the  wing  immersed  in  the  slipstream is 
less than  the  aspect  ratio of the  complete  wing,  and  depends  on  the  velocity  ratio, 
s o  that  separate  calculations are required  for  sections of the  wing  in  each  slip- 
s t ream and  in  the  free  stream. 

In the  absence of measurements of a /6  for a wing  in a jet   or a detailed 
calculation it is uncertain what  value  should  be  attributed  to it. Since,  however, 
the  effective  aspect  ratio of a wing  in  an  isolated  circular jet is generally  small, 
a/6 should  approach 1. A simple  rule that gives  the  correct  value when the 
velocity  ratio  approaches 1 is then 

where a / 6  is the  flap  effectiveness  for  the  section of the wing  in the  jet,  and 
a/6 the &p  effectiveness  for  the  free wing. From  static  tests of flaps behind one 
and two propellers on a half wing  (ref. 5) it appears  that  the  turning  angle  in a wide 
jet is about  the  same as in a circular jet. Since  the  theory  indicates  that  the  turning 
effectiveness of a wing is greater  in a wide jet ,  it may  be  concluded  that  under  static 
conditions a /6  decreases  in a wide  jet. To allow  for  this  effect  the  following  rule 
may be used  for  flaps  in a rectangular jet: 
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5. Large  angles of attack 

A tilt wing aircraft will  fly at large  angles of attack  during  transition.  Since 
the  propellers are aligned  with  the  wing,  the  added  velocity  imparted by them  will 
reduce  the  angle of attack of the blown sections of the wing. The  different  parts of 
the wing can  then be expected  to stall at different  angles,  and  the aircraft may  fly 
at an  angle  such that the unblown part  of the  wing is stalled  while  the blown parts  
a r e  not yet  stalled. In such  circumstances, it is extremely  difficult  to  predict  the 
forces  accurately, but even a rough  estimate  may  be  useful.  The  method  described 
here  should  be  regarded as giving no more  than  that. 

First,  since  the jet downwash angles  may be large,  (3.2)  and  (3.7)  should be 
replaced by 

, jets jets 

-CD. sin e )  
J k  

jets jets 

Then  the lift and drag  coefficients of each  part of the wing must  be  estimated 
at large  angles of attack. Below the stall, the lift can  be  expected  to  vary as the  sine 
of the  angle of attack. Also, one  can  allow  roughly  for  the stall by assuming that 
beyond it the lift varies as the  cosine of the  angle of attack.  Then,  for  each  section 
of the wing 

CL = C L , s i n a ,  (Y 2 max 

CL , sin a rnax 
cos a 

3 cy rnax 
‘Os max 
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where cy is the  angle of attack,  and a max is the  angle of maximum lift, both measured 
from  the  zero lift angle of that  section. 

If the  propellers are not  aligned  with  the  zero lift angle of the  wing,  the  zero 
lift angles of the blown and unblown parts  of the wing  will be different  and  must be 
calculated  separately.  Let e ’, aIwjp, and a’wjl  be  the  changes  in  the jet downwash 
angle,  the  angle of attack of the wing in a jet,  and  the  angle of attack of this  part of 
the wing in a free stream  resulting  from a unit  change of cy. The lift slope CL ,f 
of the unblown part  of the  wing  and  CL a of each blown part  of the  wing  can be 
determined by setting = 1 and  substituting E ’, “ I w j p  , and a lWjl for E ,  awjp  , and 
awjl in  (3.1) - (3.5).  Then, if CLf  and  CLj, are calculated  for cy= 0 ,  the  zero  lift 
angles of the blown and unblown sections are 

The lift coefficients at large  angles  may now be  calculated as 
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wing  and  the  part  in  each  jet,  which  remain  to  be  determined. 

It will be assumed  that  the  maximum lift angle of the two dimensional  airfoil 
is known. The  three  dimensional wing  will stall later than  the two dimensional 
airfoil  because  the  local  angle of attack is reduced by the downwash. If the  aspect 
ratio is large,  the flow can  be  regarded  locally as two dimensional, so that if a. is 
the two dimensional lift slope 

C L  = a, ae 

where a e is the  average  effective  angle of attack.  Then 

If the downwash is uniform,  the  local  angle of attack is a e. If the  downwash is not 
uniform,  the  maximum  local  angle of attack is still proportional  to ae. The stall 
can  be  expected  to  begin  when  any  section  reaches  the two dimensional  stall  angle. 
Thus,  for a high  aspect  ratio  wing, it may  be  expected  that 

a max = K 

where K is a constant 
is not satisfactory  for 
the  estimate of a max 

- < I  
low 

to  allow  for  nonuniformity of the downwash. This  formula 
aspect  ratio  wings,  since  then CL, + T/2 AR, so that 

becomes  very  large. To allow  for  this, one  may  introduce 

an  additional  factor  which  approaches 1 when AR is large  and - TAR 
a 

0 

when AR is small.  Then 

K aO 
CY - -  - a 

max2D 
(5 .7 )  
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If CL  CY is estimated by Lowry  and  Polhamus ' formula (ref. 2) as 

a 
CL, = 

TAR 1 +  - TAR 

this  reduces  to 

A good average  value of K is .8. Taking cyo = 2 T , the  maximum lift angle of 
the  wing  in a free stream  may  be  estimated  according  to  (5.7) as 

Then,  for  the unblown part  it will  be  assumed  that 

" m a 3  maxl  (5.10) 
- -CY 

The  effective  aspect  ratio of the  part  of the  wing  in  each jet depends  on  the  velocity 
ratio.  In the  absence of better  information,  the  following  rule  can  be  used. When 
P = 0 ,  use (5.8) with K = . 8  and a, = 27r so that 

ff 2 (5.11) 
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when FC > 0 ,  take 

max jp 
= (1 - /-i 2) (5.12) 

which  yields  the  correct  value  for a wing  in a free s t ream when /I = 1. 

When flaps are  deflected,  the  same  procedure  can  be  used; but in  calculating 
CLf  and  CLj, at a = 0,  the  increase of the  effective  angle of attack  due  to  the  flaps 
should  be  included,  and cy should  be  measured  from  the  zero lift angle of the 
section  with  the  flaps down. 
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6. Complete " procedure  forestLmating __-  the  forces -~ of a propeller  wing  combination 

The  formulas of section 2-5 provide  the  basis  for  estimating  the  contribution 
of the  wing  to  the  force  experienced by a propeller  driven V/STOL aircraf t ,  given 
the  dimensions,  induced  velocity,  and  downwash  angle of each  slipstream.  They 
need  to  be  complemented,  therefore, by a procedure  for  estimating  the characteristics 
of an  inclined  propeller.  The  procedure  given by De Young (ref. 2) is simple  and 
convenient. It will be used  here.  In  the  light of the  approximations  already  intro- 
duced  in  the  analysis of the  wing, it does  not  appear that it would be  fruitful  to 
incorporate a more  elaborate  analysis. 

In the  absence of better  information  about when the  slipstreams of two or 
more  propellers  merge,  it will  arbitrarily be assumed that if any two propellers 
on the  same  semispan are separated by not more  than 1/10 propeller  diameter, 
their  slipstreams  merge.  The  wide  slipstream is then  approximated by the  slip- 
s t ream of a rectangular  actuator  with  an  area  equal  to  the  sum of the  areas of the 
propeller  disks, so that  the  induced  velocity  in  the  jet is the  same when the  total 
thrust is the  same.  The  aspect  ratio of the  rectangle is taken  to  be  the  ratio of the 
width  spanned by the  outer  edges of the  propeller  disks  to  their  height.  In  deter- 
mining  the  size of the blown regions of the  wing,  one  should  allow  for  the  contraction 
of the  slipstreams behind  the  propeller. For the  sake of simplicity, it will  be 
assumed  that  the  slipstreams  are  fully  contracted  in  the  region of the wing. A wide 
slipstream  does not necessarily  contract  equally  in  the  vertical  and  lateral  directions. 
A formula  for  the  contraction of a rectangular  slipstream is derived  in Appendix  A. It 
is also  necessary  to  determine  the downwash in  the  slipstream,  and  required  formulas 
are obtained  in  Appendix B. The  analysis  in  these  appendices is due to DeYoung. 

The  various  elements  can now be  combined  into a complete  procedure  which 
is listed  below: 

A. Propeller  forces 

Sym bo1 s : 

P density 

V free stream  velocity 

v j  
final jet velocity 
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S 

sP 

ARP 
ARj 

BP 
H 

P 
Bj 

Nb 
b 

CJ 

wing area 

area of propeller  disk  or  rectangular  actuator 

aspect  ratio of rectangular  actuator 

aspect  ratio of contracted jet 

width of actuator  or  propeller  diameter 

height of actuator  or  propeller  diameter 

diameter  or width of contracted  slipstream 

number of propeller  blades 

average  blade  chord  which  may  be  estimated as 

.16(:b 25 + 2b. + 2b . 75 + b . 95) where br is the  blade  chord  at 

a radius  fraction r. 

4Nb b 
3n Bp 

- 
solidity = - - for a propeller 

blade  angle at a radius  fraction of . 75 in  degrees 

thrust  

normal  force 

normal  force  coefficient 

slope of normal  force  coefficient 

distance  downstream  from  actuator 

inflow angle  to  propeller o r  actuator 

downwash in  the  slipstream 

constant of proportionality  between  downwash  and inflow angle 
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Actuator  equation: 

1 = /I- T 
ru= 

T 2 P vj2sp 1 J' + I 2 P v2sp 

Slipstream  contraction: 

For a circular  slipstream 

B = B P (6  2) 

and AR.  does  not  need  to be defined  since it is not contained  in  the  formulas 
for a clrcular  sl ipstream;  for a rectangular  slipstream  according  to 
Appendix A 

J 

Normal  force: 

Assume that the  normal  force is proportional  to  the  sine of the inflow angle, 
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where (ref. 2 ,  equations (5) and (7)) 

and for a rectangular  actuator, is the  average  for  the  propellers. cNcY 

Downwash: 

E =  r;ff 
j (6-  7) 

where  according  to Appendix B 

E m  
2 

E = -  

r I 

- 2x + e 
H 

P 

1 - p  + - p 2+,u+p2 4 . 2 5 ~  
E OD = 3 4 l + p 2  1+2a sin ( B  + 8) 

and for a rectangular  actuator E m  is the  average  for  the  propellers. 

B. Induced  downwash angles 

Symbols : 

(6.10) 

ff angle of attack of fuselage 

i j incidence of actuator  axis  to  fuselage 

iW incidence of wing to  fuselage 
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C 

XR. 75 

YR. 75 

inflow  angle  to  actuator 

angle of attack of the wing  in  the jet 

wing  aspect  ratio 

wing  chord at the jet center 

distance of actuator  to wing  leading  edge at 3/4 
jet semispan  to  the left and  right of the jet center 

distance of fuselage  to  points at 3/4 jet semispan 
to  the left and  right of the jet center 

distance  from  one jet center  line  to  points at 3/4 jet 
'YR. 7 5 }  75 semispan  to  the  left  and  right of the  center of another jet 

Dfus fuselage  diameter 

Equation  for  actuator inflow angles : 

For  each  jet 

(6.11) 

other jets 

where Uw,  Uf, and Uo are upwash  factors  due  to  the  wing  circulation,  to  the 
fuselage  treated as an  Infinite  falling  cylinder,  and  to  the  other  slipstreams 
treated as semi-infinite  falling  cylinders (ref. 2,  equations  (12), (13), and 
(14) with a factor p to  allow  for  the  increased  velocity  in  the  slipstream). 

f 

2/-4AR [ xL.75 + .1 X + .1 ] 1 1 

R. 75 
uw = 9(AR+10) 

+ 

C C 

(6.12) 
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u = -  
f 8  YL.  75 YR. 75 

r 1 

(6.13) 

(6.14) 

Substituting 

this  set  of equations  can be solved  for a j  for each  jet,  whence E is also 
determined. 

Wing inflow angles: 

a wjl = a + i  W (6.15) 

a - - 
wjp w j l  CY - E  + (6.16) 

other  jets 

where,  since  the wing is behind  the  actuator , the upwash  factor U co due  to 
the  other  slipstreams is calculated as if  they  were  infinite  falling  cydnders, 
that is 

u, j = 2u0j (6.17) 
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r -- 

C. Lift  and  induced  drag of the  wing at .small  angles 

Symbols : 

r 1 

Df 
CD 

jE.c 

reference  velocity 

reference area 

actual  wing area allowing  for  chord  extension  due  to  flaps 

area of the  part of a wing in a slipstream 

aspect  ratio 

aspect  ratio of the  part of a wing in a slipstream 

lift slope of the wing in a free stream 

lift slope of the  part of a wing in a jet  calculated as if it 
were  an independent  planform  not  extending beyond the jet 

lift slope of the  same  planform if it were  an  independent  wing 
in a free  stream 

lift slope of the  same  planform  in a static  jet 

induced drag  factor - CD for a wing in a free stream c L2 

induced  drag  factor of the  part of the wing in a jet calculated 
as if it were  an  independent  planform  not  extending beyond the  jet 

induced  drag  factor of the  same  planform if it were  an  independent 
wing in a free  stream 

induced  drag  factor of the  same  planform  in a static  jet 

lift  coefficient of the unblown part  of the wing 

effective  angle of attack of the unblown part  of the wing 

lift coefficient of the  part of the wing in a jet 

lift coefficient  attributed  to  this  part of the wing  when the whole 
wing is in a free  s t ream 

coefficient of induced drag of the unblown part  of the wing 

coefficient of induced drag of the  part of the  wing in  a jet 
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Lift  and  induced  drag  in a free stream: 

These  can  be  calculated by Weissinger  lifting  surface  theory as developed by 
De Young and  Harper (ref. 1). Assuming  that  the  wing is not  twisted,  the 
induced drag is proportional  to  the  square of the l if t  

CD = r C L ~  

and the  induced  downwash  angle is 

where r is the  induced  drag  factor. 

For a rectangular  untwisted Wing, a quick  estimate  can  be  made by the 
following formulas  which  have  been found to be in  close  agreement  with 
the results of detailed  calculations. 

1 + .006AR r =  
TAR 

(6.18) 

(6.19) 

Lift  slope  and  induced  drag  factors  for  the  section of a wing in a jet: 

The blown region is replaced by a rectangular  planform of equal area, and 
the lift slope  and  induced  drag  factors  for  an  isolated  wing of this  planform 
in a free  stream  must  then be calculated by lifting  surface  theory,  or  else 
estimated by the  formulas  given  above  with  the  aspect  ratio of the blown 
planform as 

ARw . 
CL CY j l  = 2ir (6.20) 

A R ~ ~ ~  + 2 
ARwj + 3 AQj2 + 1 . 5  
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1 + . 006ARw. 
- 

r j l  - TARwj 

Then, for a circular  slipstream  (equations  (2.5) - (2.8) of section 2) 

and for a rectangular  slipstream  (equations  (2.1) - (2.4) of section 2) 

C L , .  1 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

97 



= . 76(ARj+e-ARj) + . 5 3  
‘jl 

Lift  and  induced drag of the  wing at small  angles: 

-2- v SCL = ( s- swj ) V2CLf + s .v. 2 CL 
WJ J j p  

(6.28) 

(6.29) 

(6.30) 
\ jets I jets 

F g C D  = (S- Swj ) V2CDf 

jets 

where V is the reference velocity 

CL = C L a l  “ f  f 

jets 

(6.32) 

(6.33) 

jets 
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CLjl  = CLal  (Y 

CD = r1 C L ~ ~  f 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

Lift  slope of the wing: 

The lift slope  can  be  obtained by solving  (6. ll), (6.15),  and  (6.16) for the 
change  in  upwash  which  results  from a unit  change of a , and  substituting 
these  values  in  (6.32) - (6.37);  that is, by calaulating CLf and  CLjk  when 
iw = i  = 0 and a =  1. 

j 

Reference  velocity: 

Usually it is most  convenient  to  take 7 = V., so that a meaning  can  be 
attached  to  CL  and CD when V = 0. If the jet velocity is different  in 
different  slipstreams,  the  same  formulas  can  be  used,  and  then it is 
convenient  to  define V as the  root  mean  square  jet  velocity 

je ts  

where  for  each  jet, S is the area of the  actuator by which it was  generated. 
P 
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D. Effect of flaps 

Symbols : 

6 flap  deflection 

“ / d l  flap  effectiveness  for  three  dimensional  wing  in a free s t ream 

ff /d j p  flap  effectiveness  for  the  section of a wing  in a jet 

iwl 

’w j p 

“/‘2D flap  effectiveness  in two dimensions 

effective  incidence of the  wing  in a free s t ream 

effective  incidence of the  section of the wing in a jet 

Effective  wing  incidence: 

The wing incidence iw is increased by the  equivalent  angle of attack  due  to 
flap  deflection;  for  the  wing  outside  the jet, the  equivalent  incidence is 

where 

ff/d 1 = 
d q +  2D AR + 2 

AR + 4.5 
AR 

(6 .39 )  

dff” 2D AR + 2 + AR + 4 . 5  
AR 

For a section of the wing in a slipstream,  the  equivalent  incidence is 

iw j = $ + ff/6 j p  6 

where  for a circular jet 

“ / 6 j p =  1 - 1  2 + P 2  q d l  

(6.40) 

(6.41) 
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and  for a rectangular jet 

(6.42) 

and  iwjp  should  be  substituted  for ty in  (6.11) and (6.15). 

Chord  extension: 

If there  is a chord  extension  due  to  the  flaps,  the  aspect  ratio  and area of the 
wing  (and of its blown sections)  should  be  corrected  to  allow  for  this, 
although it may be preferred  to  use  the  original  wing area as the  reference 
area in (6.30) and (6.31). 

E. Wing forces at large  angles of attack 

Symbols : 

ff maxi 

ff maxf 
ff maXjP 

lift slope of the unblown part  of the wing 

lift slope of the  part of the  wing in  a jet 

zero  lift  angle of the unblown part  of the  wing 

zero  lift  angle of the  part of the wing in a jet 

angle of maximum  lift of the two dimensional  airfoil, 
measured  from  the  zero  lift  angle 

angle of maximum  lift of the wing in  a free  s t ream 

angle of maximum  lift of the unblown part  of the wing 

angle of maximum  lift of the  part of the  wing  in a jet 

Zero lift  angles of the blown and unblown parts of the wing: 

Find the  lift  slopes  CLa  and  CL ff of the unblown part  of the wing  and  each 
part   in a jet by setting iw = i -  = 0 and a = 1 in (6.11),  (6.15),  (6.16), and 
(6.32) - (6.37); calculate  the  lift  coefficients CLf  and CLj,  when ff = 0 ;  then 

f j 

CL, ( a = 0) 
(6.43) 
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Stalling  angles : 

For the wing in a free  s t ream 

For the unblown part  of the  wing 

For each  part  in a jet 

(6.44) 

(6.45) 

(6.46) 

(6.47) 

(6.48) CY 
2  2 

maxj = ( 1 - p ) amaxjo + p “max l  

Lift  and  drag of the blown  and  unblown parts  of the wing: 

For the unblown part  of the wing 

CLf = CL “1 sin ( a f  - aof) , “f - aof 5 amaxf 

CLal   t an   ammaxf  COS ( a f  - a of) 9 “f  - “of>  amaxjp  (6.49) 
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For each part in a jet 

Lift  and drag of the  complete wing: 

Replace  (6.30)  and  (6.31) by 

V2SCLw = (. -x swj) V2CLf 

jets 

+x QjVj2(CLjp cos E - CDjp sin e ) (6.51) 

jets 

- V  2- SCDw= (S- x Swj) V2CDf 

jets 

+x SwjVj (CLj,, s in  E + CD cos E ) (6.52) 2 
j p  

jets 
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F. Total  forces 

Symbols : 

c13v 
cLT 

cLN 

cDW 

CDT 

CDN 

lift coefficient  due  to  wing 

lift coefficient  due  to  propeller  thrust 

lift coefficient  due  to  propeller  normal  force 

drag  coefficient  due  to  wing 

drag  coefficient  due  to  propeller  thrust 

drag  coefficient  due  to  propeller  normal  force 

Contribution of propeller  thrust  to  total lift and  drag: 

Each  actuator is inclined  through  the  sum of the  angle of attack  plus its 
incidence i therefore 

j’ 

and regarding  the  thrust as a negative  drag 

jets 

Contribution of propeller  normal  force  to  total lift and  drag: 

F S C L N  = S ~ V ~ ~ C N  cos ( a + i.) 
J 

jets 

? k D N =  S V. C N s i n ( a ! + i . )  
P J  J 

2 

jets 

(6.53) 

(6.54) 

(6.55) 

(6.56) 
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where CN is given by (6.5) and (6.6).  

Total lift and  drag: 

C L  = C& + CLT + CLN 

CD = CDw + CDT + CDN 

(6 .57)  

(6.58) 
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7. Comparison of the  theory  with tests 

The  formulas of section  6  have  been  incorporated  in a computer  program  for 
quick  estimation of the  characteristics of V/STOL configurations.  This  section 
presents  comparisons  between  the  predictions  obtained  with  this  program  and 
experimental  data.  The  data was obtained  from  the  following NASA reports:  

TN  3307, An Investigation of a Wing-Propeller  Employing  Large- 
Chord  Plain  Flaps  and  Large  Diameter  Propellers  for Low-Speed 
Flight  and  Vertical  Take-Off, by Richard  E. Kuhn and  John W. 
Draper,  1954. 
TN D17, Wind Tunnel  Investigation of Effect of Ratio of Wing 
Chord  to  Propeller  Diameter  with  Addition of Slats  on  the 
Aerodynamic  Characteristics of Tilt-Wing VTOL Configurations 
in  the  Transition Speed  Range, by Robert  T.  Taylor,  1959. 
TN  D1586,  Aerodynamic Data on a Large  Semispan  Tilting Wing 
with 0. 6  Diameter  Chord,  Single  Slotted  Flap,  and  Single 
Propeller  Rotating Up at Tip, by Marvin P. Fink,  Robert G. 
Mitchell,  and  Lucy G. White,  1964. 
TN D3375, Aerodynamic Data on a Large  Semispan  Tilting Wing 
with  0.5  Diameter  Chord, Double Slotted  Flap,  and  Both  Left  and 
Right-Hand  Rotation of a Single Propeller,  by Marvin P. Fink, 
Robert G. Mitchell,  and Lucy G. White,  1966. 
TN D4448,  Large-Scale  Wind-Tunnel Tests  of a Deflected Slip- 
s t ream STOL  Model with Wings of Various  Aspect  Ratios, by 
V. Robert  Page,  Stanley 0. Dickinson,  and  Wallace H. Deckert, 
1968. 

These  were  selected  because  they  cover a representative  range of configurations. 
Tests  with  and  without  flap  deflection  will  be  considered  separately. 

A. Unflapped  Wings 

Comparisons are  presented  in  fig.  3 - 9. Each  figure  shows 

(a) a sketch of the  configuration  with  pertinent  data 
(b)  the  variation of CL cy with  CT 
(c)  the  variation of CL  with a for  selected  thrust  coefficients 
(d) polar  curves of CL  against CD for  selected  thrust  coefficients 
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All  the  aerodynamic  coefficients are referred  to  the  slipstream  velocity 

CT = 
- PV 2s 2 j P  

CL = 
L 

- P v j 2 s  
1 
2 

CD = 
D 

- P v .23  1 
2 J  

so  that the  static  case is represented by CT = 1 .0 ,  and  the  lift  coefficient  decreases 
as the  thrust  coefficient  increases  and  the  velocity  ratio  decreases.  The  drag 
includes  the  thrust so that, at small  angles of attack, CD is negative. 

The  assumed  angles of zero  lift and  maximum lift for  the two dimensional 
airfoil  section are recorded in each  figure.  Generally,  the lift slope of the  free 
wing was  calculated by the  method of De Young and Harper (ref. 1). This  method 
was  incorporated  in  the  program. In the  cases of T N  Dl7 and  TN D4448, however, 
this  method  was found to  give  very  poor  agreement.  Values  were  then  assumed 
for  the lift slope of the  free wing  which  yielded  agreement  with  the  power-off 
measurements.  The low lift slope  recorded  in  TN Dl7 might  be  due  to  the low 
Reynolds  number at which  those tests were  conducted. In the  case of TN D4448, 
separation at the  wing  fuselage  junction  may  have  caused a loss of lift. 

It  can  be  seen that the  theory  and  the  measurements are generally  in good 
agreement.  The  largest  divergences  are  in  the  region of the  stall ,  as might  be 
expected,  considering  the  approximate  treatment of the stall. When the  thrust 
coefficient is large enough,  the stall is suppressed  because  the jet is aligned  with 
the  wing,  while  the  contribution of the unblown part  of the  wing is negligible. At 
lower  thrust  coefficients,  there  may  be  separate stall breaks  for  the blown and 
unblown parts of the wing.  Since  no  allowance  for  profile  drag  was  included  in  the 
calculations,  the  theoretical  drag  curves  should be to  the  left of the  experimental 
points. At  high thrust  coefficients,  the  apparent  profile  drag  coefficient is reduced 
because  the  drag  coefficient of sections  outside  the  slipstream is referred  to  the 
higher  velocity  in  the  slipstream. In the case of the  medium  span wing  in  TN D4448, 
the  theoretical  drag  curve is to  the  right of the  experimental  points.  This is because 
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the  reported  thrust  coefficient  based  on  wing area of 3 . 8  is not  consistent  with  the 
measured  drag  coefficient of -4.0. Generally  the  induced  drag is the  dominant 
component of the  drag. 

B. Flapped Wings 

Comparisons  for  some  representative  flap  deflections are shown in  fig. 10 - 
16. Each  figure  shows 

(a)  a sketch of the  configuration  including  the  flap  geometry 
(b) the variation of CL  with a for  selected  thrust  coefficients 
(c)  polar  curves of CL  against CD for  selected  thrust  coefficients 

In this  case,  the  program  requires  data on the following properties of the two 
dimensional  section: 

(1) zero lift angle  without  flap  deflection 
(2) the  flap  effectiveness ~ / 6 ~ ~  
(3) the  flap  angle 
(4)  the  chord  extension  due  to  the  flaps 
(5) the  angle of maximum lift with  the  flaps  deflected 

The  assumed  values are recorded  in  the  figures. 

According  to  the  standard wing theory, a change  in  the  camberline  should 
alter  the  zero lift angle  but  not  the lift slope of a two dimensional  airfoil. If the 
lift coefficient is referred  to  the  original wing area, flap  deflection would then  cause 
an  increase  in  the lift slope  proportional  to  the  chord  extension. On a three 
dimensional  wing,  the  increase  should  be  slightly less than  this  because of the 
reduction  in  aspect  ratio. In the  case of T N  D4448, the  increase  in lift slope 
measured  power off was  much  greater  than  the  increase  in wing area. The  values 
of CL,  power off and ,/6 used  in  the  calculations  were  selected  to  give 
reasonable  agreement  in  the  absence of power  effects. In all the  other  cases  CL, 
power off was  calculated by the  program  for  the  true  planform  with  chord  extension, 
but referred  to  the  original wing area.  

The  agreement  between  the  theory  and  the tests is fair. The  largest  source 
of e r ro r  is again  the  prediction of the  stalling  angle  under  power.  It  appears that 
the  application of power  sometimes  delays  the stall. There is a tendency  to  under- 
estimate  the lift slope at medium  thrust  coefficients.  Also,  the  profile  drag  can 
become  important  when  flaps are deflected  through  large  angles , with a consequent 
separation of the flow. 
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C. Static tests of flap turning  effectiveness 

It would be  possible .to improve  the  prediction of the  performance of flapped 
wings if more  was known about  the effect of the jet on  the  flap  effectiveness . . 
Tests have  generally  been  made of wings  with  propellers  attached  to  them so that 
the  angle of attack of the wing in  the jet was  fixed,  and  only  the  flap  angle  was  varied. 
As a result,  the  flap  effectiveness  cannot  be  directly  determined; but if theoretical 
values of CL are assumed  for  the wing in  the jet, it is possible  to  impute  values 
of 0 /6 . 

When the  aircraft is static,  the  performance  can  conveniently be measured 
by the  angle 8 through  which  the jet is turned. For conservation of momentum 

L s in  0 = - 
T 

Now the  turning  angles of rectangular wings  in  rectangular jets is shown  in  fig. 3 
of Part 1. For a given jet width,  the  turning  effectiveness e / ,  of the wing 
increases as its chord is increased  towards a limiting  value  for a wing of infinite 
chord  or  zero  aspect  ratio.  This  limiting  value is plotted  in  fig.  17.  It is generally 
less  than unity  but increases  towards unity as the  jet  width  increases. For a square 
jet 

The  limiting  turning  effectiveness of a wing  spanning a circular  jet  can be deter- 
mined by slender wing  theory.  In  the  static  case,  the  result of Graham  et al. 
(ref. 6) reduces  to 

CL, = - TAR 2 (1 - 5) 
Then if B  and c are   the jet diameter  and wing  chord 

L, = -  P V ~  BcCL, 1 2  
2 

= pvj2?r- B2 
4 (l-5) 



while 

Since @/a equals La /T,  it may be deduced that for a circular jet 

The  inability of a wing to  deflect a jet through its full  angle of attack has a 
simple  physical  explanation.  Sketch  2(a)  shows a view of the  cross  plane.  The 
pressure  differential Ap is zero at the jet boundary,  negative  in  the  center of the 
jet above  the  wing,  and  positive below it. The  pressure  gradient  induces  an  inward 
flow  above  the  wing  and  an  outward flow  below it. To conform  the  surface  velocity 
to  the  angle of attack of the  wing,  there  must  be a downward  flow. When this is 
superposed on the  spanwise  flows,  the  streamlines  in  the  cross  plane  have a 
shape  like that depicted  in  sketch  2(b).  They  converge  above  the  wing  and  diverge 
below it. The  average downward  velocity is less than  the  downward  velocity V j  a 
at the  wing surface,  and  the  average  deflection  angle 8 is less  than a . It is thus 
a n  edge  effect  which  prevents  the  wing  turning  the jet through  the full wing  angle. 
As the jet becomes  wider,  the  influence of the  boundary is progressively  diminished 
until  finally  the  theory  predicts  that  an  infinitely  wide jet would follow  round  the 
wing surface,  in  agreement  with  the well known Coanda effect. 

Kuhn has  digested  the  results of a number of tests of flapped  wings  in jets 
(ref. 7). In  fig. 18, he gives a curve of the  turning  effectiveness of flaps as a 
function of their  chord. A detailed  analysis of numerous  experiments has been  made 
and  some  typical  results  are shown in  fig. 1 9  - 20. It  can be seen that for  some 
flap  configurations , 8 /6 has been  measured as high as . 7 5 .  If the  theoretical 
maximum  value of 8 / a  is substituted  in  the  relation 

then  Kuhn's  curve would imply  values of the a /6 greater  than  unity.  The  precise 
value  imputed  to @/a max by the  theory  depends  on  the  application of the  boundary 
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A P =  0 

A P = o  

(a) Pressure  gradients 

(kr) Streamlines 

Sketch 2. Flow in  the Cross Plane of a Jet  Over a Wing 

condition  without  regard  for jet deflection  and  distortion.  Nevertheless  the 
preceeding  physical  agreement  indicates that the  deflection  angle of a narrow  jet 
should  be  substantially  less  than  the wing trailing  edge  angle. It may  be  concluded 
that the flap effectiveness a /6 can  be  close  to  unity.  The  formulas (4.3) and 
(4.4) in  section 4 were  designed  to  take  account of this. 
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8. Conclusions 

The  determination of the lift and drag of a wing in  the  slipstream of several  
propellers  requires  massive  calculations  even when the  problem is simplified by 
using  the  equations of an ideal  fluid,  ignoring  slipstream  deflection  and  distortion, 
and  linearizing  the  boundary  conditions.  The  use of a rectangular jet to  approximate 
the  slipstream  permits  standard  imaging  techniques  to  be  used  to  treat  the  case of 
a static wing propeller  combination.  The  effect of forward  speed  can be treated 
approximately by multiplying  the  interference  potential by a scalar  strength  factor 
derived  with  the  aid of studies of elliptic  jets. By introducing  the  idea of the 
equivalent  mass flow influenced by the  wing, it is possible  to find simple  formulas 
which  closely  approximate  the  results of the  detailed  calculations.  These  formulas 
provide  the basis of a method  suitable  for  engineering  calculations  which  shows 
good correlation  with  existing  experimental  data  for  wings  without  flaps. 

The  method  can  also be used  to  predict  the lift and  drag of propeller-wing- 
flap  combinations i f  suitable  values are assumed  for  the  flap  effectiveness a/6 
in a jet. Experimental  evidence  suggests  that  the  flap  effectiveness is substantially 
increased  in a jet and  may  be  close  to  unity.  Because of edge  effects, it can  be 
expected that a wing  will not deflect a jet through  the  full  angle of attack. Yet 
static tests of flaps  in jets indicate that the  turning  ratios of flaps  may  even  exceed 
the  theoretical  maximum  value  for  wings of infinite  chord.  There is a need  for 
tests in  which  the jet producing  device is removed  from  the wing s o  that  both  angle 
of the wing  in  the jet and  the  flap  angle  can be varied  to  give  precise  measurements 
of CL a , CL 6 and a/6 . It is possible that jet  distortion is important,  and it would 
lead  to a better  insight  into  the  problem if observations  were  also  made of the final 
shape of the jet cross  section. 

Two principal  computer  programs  have  been  developed 

(1) for  the  calculation of the lift of a symmetric wing in a rectangular 

(2) for  the  prediction of the  characteristics of practical V/STOL 
jet according  to  the  theory of Part 1. 

configurations  according  to  the  engineering  method  described  in 
Part 2. 

These are available  through  the COSMIC Computer  Library,  Computer  Software 
Management and Information  Center,  Barrow Hall, University of Athens,  Georgia 
30601. 
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Figure 1. Ratio of Lift  in a Static  Jet  to  Lift  in a Free  Stream 
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Figure 9. Correlation with TN D4448 (Medium  Wing); 
Coefficients  Referred to Slipstream  Velocity 
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Figure 11. Correlation with TN 3307 (4  Propellers);  Flap 20’; 
Coefficients  Referred to Slipstream  Velocity 
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Figure 17. Effect of Jet Width on Limiting  Turning  Ratio 

130 



o One slotted  flap  (Refs. 4, 5, 7, 9, 1 0  and  unpublished data) 
o Two slotted  flaps  (Refs. 4, 5, and  unpublished  data) 
o One  plain  flap  (Refs. 2, 8, and 9) 
A Two plain  flaps  (Refs. 2, 8, and  unpublished data) 
0 One sliding  flap  (Refs. 7, 10, and  unpublished  data) 
0 Two sliding  flaps  (Unpublished  data) 
D Combination sliding - slotted  flaps  (Refs. 7 and 10)  
X Wing incidence and camber (Refs. 4 and 7)  
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Figure 18. Variation of Turning Angle with the  Ratio of Total  Flap  Chord to Propeller 
Diameter for Various  Flap  Configurations  in  Hovering Out of Ground-Effect Region 

(Reproduced  from NASA Memorandum 1-16-59L. Reference  Numbers 
Are  for  the  List of References in This Report. ) 
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Appendix A Slipstream  contraction 

In order  to calculate the  loads on the  wing, it is necessary first to  determine 
the  dimensions  and  velocity of each jet. Because  the  slipstream  contracts  to 
preserve  the  mass flow as the  velocity is increased  through  the  actuator,  the 
dimensions of the jet at the  wing  quarter  chord  line  will  be  smaller  than  those of 
the  actuator. 

The  velocity  field  inside a jet can  be  approximated by representing  the jet 
edge as a column of closed  vortices  stacked  together. A circular jet is then 
formed by a cylinder of ring  vortices.  The  induced  velocity  may  be  calculated 
by the Biot Savart law in  exactly  the  same way as the  magnetic  field  due  to a wire 
carrying  an  electric  current.  According  to  this,  the  velocity  due  to a segment of 
length  ds of a vortex of strength r is 

where r is the  distance  to  the  segment  and 8 is the  angle to its direction. When 
this is integrated,  the  velocity at a point x on  the  center  line of a jet of radius R 
due  to a ring  vortex  at a point jT is P 

u(x) = 
2 [ R: + (G - x ) ~ ]  3’2 

Let N be the  number of ring  vortices  per unit  length.  Then  the  total  axial  velocity 
due  to a cylinder of semi-infinite  length is 
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Thus 

The  velocity far downstream is twice  the  velocity at the  actuator,  in  agreement 
with  propeller  momentum  theory. 

The  induced  longitudinal  velocity at points  on  the  plane z = 0 due  to a closed 
rectangular  vortex of height Hp and  span B is 

P 
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E =  X ; v -  -L Bp/2 Bp/2 

'hen  integrating from F = 0 to m 

r 
L 

B 

ARP It. 
-2 - 

P 

+ tan-lAR (1- 7 )  + tan-l 1 
P ARp(l+t) 

AR ( 1 + t l ) f  
+ tan-1 

2+1+AR 2( 1+ q ) P 
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The arc tangent  terms  can  be  combined  to  yield 

1 

A similar  treatment  leads  to  the  same  formula for the  velocity at points  in  the  plane 

y = 0 ,  with rl replaced by - and ARP  by - . 22 1 

HP ARP 

According  to (A2) the  induced  velocity is constant  throughout  the  cross  section 
at = 0 and w . In fact it is well known from  the  theory of electromagnetic sol- 

1 1 in  the  velocity at different  heights  when E = - o r x = -  is tabulated 
HP 

below: 

AR = 1  
P 2 W 

17 = o  1.667 
. 5  1.698 
1 1.760 

1.565 1.50 
1.600 1.50 
1.760 1.75 

It can  be  seen  that  the  velocity is still nearly  independent of the  position  in  the 
cross  section.  The  velocity  will  therefore  be  taken  everywhere as that at the 
center  line, 
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The  representation as a column of vortices  does not  allow  for  the  contraction 
of the jet. This effect can  be  approximated by using (Al) and (A3) with the  local 
jet dimensions,  calculated so that the  mass flow is constant.  Let Vo be the external 
velocity  and Vj the jet velocity far downstream.  Then,  the  velocity. at a distance 
x downstream is 

V(X) = vo + u(x) 

and 

vj = v + U ( a J )  = vo + 2  u(0)  
0 

VO Thus, if p is the  velocity  ratio - 

and 

Let Sp be  the  actuat 
flow 

or a rea  and S(x) the jet area.  Then, for c 

or 

ontinuity  of  the mass 
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If the  jet is circular and its radius is R(x) at a distance x downstream, 
then  substituting (Al)  in  (A4) 

* =  1 

Similarly, for a rectangular jet substituting (A3) in (A4) 

HPBP 1 (E) tan-1 ( 2x 4 ~ )  (A6) 

HPBP 

It is desired  to  replace both %B by H(x)B(x)  and H 2+Bp2 by H2(x) + B2(x)  in (A3). 
Now P  P 

2 ( x )  + B2(x) = [B(x) - H(x)] + 2H(x)B(x) 

When Bp > A2) indicates  that  the  velocity  and  corresponding  pressure  drop are 
larger  at the  side  boundaries of the  jet  than  they are at the  top  and  bottom  boundaries. 
Thus  the  absolute  magnitude of the  decrease  in B(x) is greater  than  that of H(x). 
The  proportionate  decrease  in H(x) , however,  can be expected  to  be  greater  than that 
of B(x) , because  in  the  limiting  case, as the  width of the  jet is increased  until it 
becomes  an  infinite  strip,  the area change must be  accomplished by a vertical 

contraction,  with H(x) approaching - . A relation  that  approximates  these 

Kp'  ( 

1 + P  
2 HP 

two conditions is 

r 1 
B  -B(x) = LHp - H(x) J 

P ARP 
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(A6) may  be  solved  using (A") to  give 

1 
B(x) = 

2 

Then B(x)  and H(x) may  be found by substituting  for H(x) B(x)  on the  right  from (A6). 

When R is replaced by R(x) in ( A l )  or  Hp and Bp are  replaced by H(x) and 
B(x)  in  (A3), itpis found that at a distance  downstream  equal  to  the  propeller 
diameter  or  actuator  height,  the  velocity  even  in  the  static  case has already  reached 
a fraction . 897 of its final  value  when  the  jet is circular ,  and fractions . 873, . 831 
and  .813 when the  jet is rectangular  with  aspect  ratios of 1, 2 and 03 . The  effect 
of viscosity  has  been  ignored  in  this  treatment.  Experimental  measurements  in 
air indicate  that  due  to  viscosity,  the  maximum  velocity  in  fact  occurs at about 
one  propeller  diameter  downstream. It is generally  reasonable  therefore to assume 
that  the  slipstream has already  reached its final  state  in  the  region of the  wing. 
Then,  for a circular jet 

R =- 1 + P  
2 RP 



and for a rectangular  jet 

Actually,  since  the  velocity is not exactly  uniform at points  downstream,  pressure 
variations would cause a jet that started  rectangular  to  become  rounded. 
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Appendix  B  Downwash in  the  slipstream 

If the propellers are inclined  to  the  free  stream,  they  will  deflect it so that 
the  angle of attack of the wing in  the  slipstream  will be altered. 

The  downwash  can  be  determined  from  the  inflow  angle a .  as 
J 

According  to  Ribner 's analysis (ref. B1) , the  final  downwash  factor far downstream 
can be expressed  in  terms of the  velocity  ratio p and  the  normal  force  coefficient 
at zero  thrust as 

1-P  
+ 

2 /1(2+P+/12) 
l+p 2 4(1+ ~ 2 )  E ,  =-  CN, (T = 0) 

The  normal  coefficient  can  be  estimated by  De Young's method (ref. B2) as 

CN,  (T=O) = s in  ( P+8)  (B3) 4 .25  u 
1+2 u 

where u is the  effective  solidity  and f l  is the  blade  angle  in  degrees at a radius 
fraction of 3/4. 

Near the  propeller, it will be assumed that the downwash varies  along  the 
longitudinal  axis  in  the  same way as the  downwash at the  center of a horseshoe 
vortex. If the  propeller  radius is R,  the downwash factor at a distance x is then 

I 
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. . . . . . . .. . . . . . .. . . . . . . . .. . . " . . . - . . . . . . .. . . - . -- -. , - .. . . -. . - . 
. I 

where e can  be  determined  from  the  condition that the flow  should  be  normal  to  the 
disk  immediately behind i t ,  or  E = 1 when x = 0. This leads to 

2 4 1-E m 

Note that E m-+ 1 as p + 0. In this  case,  e "t 03 and E - 1 for  all  x,  in  agreement 
with  the  absence of slipstream  deflection  when  the  aircraft is static. 

When the jet is rectangular,  the downwash  will  be  assumed  to  vary  like  that 
of a horseshoe  vortex of the  same  width B as the  actuator,  leading  to  the  factor 

Now an  infinitely  wide jet can  have no f ina l  downwash in  the  presence of an  
external  stream,  since  the downwash  in  the  entire  crossplane at infinity  must 
be  uniform  to preserve continuity of the  flow. If the  actuator is regarded as acting 
like a wing  when it generates a normal  force,  the  final downwash  when P > 0 
can  be  expected  to  be  inversely  proportional  to its width. If E is calculated  for 
the  propellers  represented by the  actuator  according  to  (Bl), it is possible  to  allow 
for  this  effect by introducing a factor 

- 2x 
B + e  

where H is the  actuator  height.  Combining  the two factors,  the downwash factor 
can  be  estimated as 

H 
B 

Then E + E m  - as when ,U > O ,  but E = l  when I* = 0. 
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